86 research outputs found

    Endpoint Structure in β\beta Decay from Coherent Weak-Interaction of the Neutrino

    Get PDF
    Recent tritium beta decay experiments yield unphysical negative best-fit values for the square of the neutrino mass. An unidentified bump-like excess of counts few eV below the endpoint in the electron energy spectrum has been tentatively recognized as the source of this anomaly. It is shown that the repulsive potential acting on the emitted antineutrino and originating in its coherent weak-interaction with the daughter atom may effectively account for this excess.Recent tritium beta decay experiments yield unphysical negative best-fit values for the square of the neutrino mass. An unidentified bump-like excess of counts few eV below the endpoint in the electron energy spectrum has been tentatively recognized as the source of this anomaly. It is shown that the repulsive potential acting on the emitted antineutrino and originating in its coherent weak-interaction with the daughter atom may effectively account for this excess

    First Characterization of the Ultra-Shielded Chamber in the Low-noise Underground Laboratory (LSBB) of Rustrel Pays d'Apt

    Get PDF
    In compliance with international agreements on nuclear weapons limitation, the French ground-based nuclear arsenal has been decommissioned in its totality. One of its former underground missile control centers, located in Rustrel, 60 km east of Avignon (Provence) has been converted into the ``Laboratoire Souterrain \`a Bas Bruit de Rustrel-Pays d'Apt'' (LSBB). The deepest experimental hall (500 m of calcite rock overburden) includes a 100 m2^{2} area of sturdy flooring suspended by and resting on shock absorbers, entirely enclosed in a 28 m-long, 8 m-diameter, 1 cm-thick steel Faraday cage. This results in an unparalleled combination of shielding against cosmic rays, acoustic, seismic and electromagnetic noise, which can be exploited for rare event searches using ultra low-temperature and superconducting detectors. The first characterization measurements in this unique civilian site are reported. For more info see http://home.cern.ch/collar/RUSTREL/rustrel.htmlComment: Homepage and quoted hyperlinks have been updated: see http://home.cern.ch/collar/RUSTREL/rustrel.htm

    Prospects For Identifying Dark Matter With CoGeNT

    Full text link
    It has previously been shown that the excess of events reported by the CoGeNT collaboration could be generated by elastically scattering dark matter particles with a mass of approximately 5-15 GeV. This mass range is very similar to that required to generate the annual modulation observed by DAMA/LIBRA and the gamma rays from the region surrounding the Galactic Center identified within the data of the Fermi Gamma Ray Space Telescope. To confidently conclude that CoGeNT's excess is the result of dark matter, however, further data will likely be needed. In this paper, we make projections for the first full year of CoGeNT data, and for its planned upgrade. Not only will this body of data more accurately constrain the spectrum of nuclear recoil events, and corresponding dark matter parameter space, but will also make it possible to identify seasonal variations in the rate. In particular, if the CoGeNT excess is the product of dark matter, then one year of CoGeNT data will likely reveal an annual modulation with a significance of 2-3σ\sigma. The planned CoGeNT upgrade will not only detect such an annual modulation with high significance, but will be capable of measuring the energy spectrum of the modulation amplitude. These measurements will be essential to irrefutably confirming a dark matter origin of these events.Comment: 6 pages, 6 figure

    Design and Characterization of a Neutron Calibration Facility for the Study of sub-keV Nuclear Recoils

    Full text link
    As part of an experimental effort to demonstrate sensitivity in a large-mass detector to the ultra-low energy recoils expected from coherent neutrino-nucleus elastic scattering, we have designed and built a highly monochromatic 24 keV neutron beam at the Kansas State University Triga Mark-II reactor. The beam characteristics were chosen so as to mimic the soft recoil energies expected from reactor antineutrinos in a variety of targets, allowing to understand the response of dedicated detector technologies in this yet unexplored sub-keV recoil range. A full characterization of the beam properties (intensity, monochromaticity, contaminations, beam profile) is presented, together with first tests of the calibration setup using proton recoils in organic scintillator.Comment: submitted to Nucl. Instr. Meth.

    The kinetic dark-mixing in the light of CoGENT and XENON100

    Full text link
    Several string or GUT constructions motivate the existence of a dark U(1)_D gauge boson which interacts with the Standard Model only through its kinetic mixing. We compute the dark matter abundance in such scenario and the constraints in the light of the recent data from CoGENT, CDMSII and XENON100. We show in particular that a region with relatively light WIMPS, M_{Z_D}< 40 GeV and a kinetic mixing 10^-4 < delta < 10^-3 is not yet excluded by the last experimental data and seems to give promising signals in a near future. We also compute the value of the kinetic mixing needed to explain the DAMA/CoGENT/CRESST excesses and find that for M_{Z_D}< 30 GeV, delta ~ 10^-3 is sufficient to fit with the data.Comment: 6 pages, 5figure

    Beta Irradiation of a Geometrically Metastable Superconducting Strip Detector with a Magnetic Flux Penetration Read-Out

    Full text link
    Geometrical metastability, observed in superconducting type I tin flat strips, has been previously proposed as a principle for particle detection. The energy deposition of an incoming beta-particle induces the rupture of the metastability and consequently the penetration of multiquantum flux tubes into a superconducting tin strip. We present here the first absorption spectra from two beta sources, which demonstrate the linearity and energy-resolution of these detectors (presented at the 6th International Workshop on Low Temperature Detectors for Dark Matter and Neutrinos (LTD-6), Interlaken, Switzerland, Sept. 1995)Comment: Compressed PostScript (filename.ps.Z), 8 pages, 2 figure

    Nuclear Tracks from Cold Dark Matter Interactions in Mineral Crystals: A Computational Study

    Full text link
    Recoiling nuclei from Cold Dark Matter (CDM) elastic scattering interactions with the constituent elements of some minerals may produce etchable damage tracks in the crystal structure. Present calculations show that in muscovite mica, CDM tracks from recoiling potassium atoms could be readily distinguished from others due to alpha-decays in the uranium and thorium chains. Under favorable conditions, this technique could greatly improve the existing limits on Weakly Interacting Massive Particles as the constituents of the galactic halo.Comment: PostScript, 15 pages, 3 figure

    Low-background applications of MICROMEGAS detector technology

    Full text link
    The MICROMEGAS detector concept, generally optimized for use in accelerator experiments, displays a peculiar combination of features that can be advantageous in several astroparticle and neutrino physics applications. Their sub-keV ionization energy threshold, excellent energy and space resolution, and a simplicity of design that allows the use of radioclean materials in their construction are some of these characteristics. We envision tackling experimental challenges such as the measurement of neutral-current neutrino-nucleus coherent scattering or Weakly Interacting Massive Particle (WIMP) detectors with directional sensitivity. The large physics potential of a compact (total volume O(1)m3^{3}), multi-purpose array of low-background MICROMEGAS is made evident.Comment: 5 pg, presented at IMAGING-2000, Stockholm, June 2000. To appear in Nucl. Instr. & Meth. Final version after referees' inpu

    The ZZ' kinetic mixing in the light of the recent direct and indirect dark matter searches

    Full text link
    Several constructions, of stringy origins or not, generate abelian gauge extensions of the Standard Model (SM). Even if the particles of the SM are not charged under this extra U(1)U'(1), one cannot avoid the presence of a kinetic mixing between U(1)U'(1) and the hypercharge UY(1)U_Y(1). In this work, we constraint drastically this kinetic mixing, taking into account the recent experimental data from accelerator physics, direct detection and indirect detection of dark matter. We show that the region respecting WMAP and experimental constraints is now very narrowed along the pole line where MZD2mDMM_{Z_D}\simeq 2 m_{DM}, ZDZ_D being the gauge boson associated to the extra U(1)U'(1).Comment: 9 pages, 3 figures, final version to appear in JCA

    S-35 Beta Irradiation of a Tin Strip in a State of Superconducting Geometrical Metastability

    Full text link
    We report the first energy loss spectrum obtained with a geometrically metastable type I superconducting tin strip irradiated by the beta-emission of S-35. (Nucl. Instr. Meth. A, in press)Comment: Compressed PostScript (filename.ps.Z), 9 pages, 2 figure
    corecore