234 research outputs found
Wave propagation and shock formation in different magnetic structures
Velocity oscillations "measured" simultaneously at the photosphere and the
chromosphere -from time series of spectropolarimetric data in the 10830 A
region- of different solar magnetic features allow us to study the properties
of wave propagation as a function of the magnetic flux of the structure (i.e.
two different-sized sunspots, a tiny pore and a facular region). While
photospheric oscillations have similar characteristics everywhere, oscillations
measured at chromospheric heights show different amplitudes, frequencies and
stages of shock development depending on the observed magnetic feature. The
analysis of the power and the phase spectra, together with simple theoretical
modeling, lead to a series of results concerning wave propagation within the
range of heights of this study. We find that, while the atmospheric cut-off
frequency and the propagation properties of the different oscillating modes
depend on the magnetic feature, in all the cases the power that reaches the
high chromosphere above the atmospheric cut-off comes directly from the
photosphere by means of linear vertical wave propagation rather than from
non-linear interaction of modes.Comment: Accepted for publication in The Astrophysical Journal. 29 pages, 9
figures, 12pt, preprin
The Hanle and Zeeman Effects in Solar Spicules: A Novel Diagnostic Window on Chromospheric Magnetism
An attractive diagnostic tool for investigating the magnetism of the solar
chromosphere is the observation and theoretical modeling of the Hanle and
Zeeman effects in spicules, as shown in this letter for the first time. Here we
report on spectropolarimetric observations of solar chromospheric spicules in
the He I 10830 \AA multiplet and on their theoretical modeling accounting for
radiative transfer effects. We find that the magnetic field in the observed
(quiet Sun) spicular material at a height of about 2000 km above the visible
solar surface has a strength of the order of 10 G and is inclined by
approximately with respect to the local vertical direction. Our
empirical finding based on full Stokes-vector spectropolarimetry should be
taken into account in future magnetohydrodynamical simulations of spicules.Comment: 12 pages and 2 figure
Penumbral thermal structure below the visible surface
. The thermal structure of the penumbra below its visible surface
(i.e., ) has important implications for our present understanding
of sunspots and their penumbrae: their brightness and energy transport, mode
conversion of magneto-acoustic waves, sunspot seismology, and so forth. .
We aim at determining the thermal stratification in the layers immediately
beneath the visible surface of the penumbra: ( km below the visible continuum-forming layer). . We analyzed
spectropolarimetric data (i.e., Stokes profiles) in three Fe \textsc{i} lines
located at 1565 nm observed with the GRIS instrument attached to the 1.5-meter
solar telescope GREGOR. The data are corrected for the smearing effects of
wide-angle scattered light and then subjected to an inversion code for the
radiative transfer equation in order to retrieve, among others, the temperature
as a function of optical depth . . We find that the
temperature gradient below the visible surface of the penumbra is smaller than
in the quiet Sun. This implies that in the region the penumbral
temperature diverges from that of the quiet Sun. The same result is obtained
when focusing only on the thermal structure below the surface of bright
penumbral filaments. We interpret these results as evidence of a thick
penumbra, whereby the magnetopause is not located near its visible surface. In
addition, we find that the temperature gradient in bright penumbral filaments
is lower than in granules. This can be explained in terms of the limited
expansion of a hot upflow inside a penumbral filament relative to a granular
upflow, as magnetic pressure and tension forces from the surrounding penumbral
magnetic field hinder an expansion like this.Comment: 5 pages; 2 figures; accepted for publication in Astronomy and
Astrophysics Letter
The European Solar Telescope (EST)
The European Solar Telescope (EST) is being designed to optimize studies of the magnetic coupling between the lower layers of the solar atmosphere (the photosphere and chromosphere) in order to investigate the origins and evolution of the solar magnetic field and its role in driving solar activity. In order to achieve this, the thermal, dynamic and magnetic properties of the solar plasma must be probed over many scale heights and at intrinsic scales, requiring the use of multi wavelength spectroscopy and spectropolarimetry at high spatial, spectral and temporal resolution. In this paper we describe some of the over-arching science questions that EST will address and briefly outline the main features of the proposed telescope design and the associated instrumentation package
The influence of coronal EUV irradiance on the emission in the He I 10830 A and D3 multiplets
Two of the most attractive spectral windows for spectropolarimetric
investigations of the physical properties of the plasma structures in the solar
chromosphere and corona are the ones provided by the spectral lines of the He I
10830 A and 5876 A (or D3) multiplets, whose polarization signals are sensitive
to the Hanle and Zeeman effects. However, in order to be able to carry out
reliable diagnostics, it is crucial to have a good physical understanding of
the sensitivity of the observed spectral line radiation to the various
competing driving mechanisms. Here we report a series of off-the-limb non-LTE
calculations of the He I D3 and 10830 A emission profiles, focusing our
investigation on their sensitivity to the EUV coronal irradiation and the model
atmosphere used in the calculations. We show in particular that the intensity
ratio of the blue to the red components in the emission profiles of the He I
10830 A multiplet turns out to be a good candidate as a diagnostic tool for the
coronal irradiance. Measurements of this observable as a function of the
distance to the limb and its confrontation with radiative transfer modeling
might give us valuable information on the physical properties of the solar
atmosphere and on the amount of EUV radiation at relevant wavelengths
penetrating the chromosphere from above.Comment: 19 pages, 11 figures (pre-print format). Accepted for publication in
Ap
Channeling 5-min photospheric oscillations into the solar outer atmosphere through small-scale vertical magnetic flux tubes
We report two-dimensional MHD simulations which demonstrate that photospheric
5-min oscillations can leak into the chromosphere inside small-scale vertical
magnetic flux tubes. The results of our numerical experiments are compatible
with those inferred from simultaneous spectropolarimetric observations of the
photosphere and chromosphere obtained with the Tenerife Infrared Polarimeter
(TIP) at 10830 A. We conclude that the efficiency of energy exchange by
radiation in the solar photosphere can lead to a significant reduction of the
cut-off frequency and may allow for the propagation of the 5 minutes waves
vertically into the chromosphere.Comment: accepted by ApJ
On the Magnetic Field Strength of Active Region Filaments
We study the vector magnetic field of a filament observed over a compact
Active Region Neutral Line. Spectropolarimetric data acquired with TIP-II (VTT,
Tenerife, Spain) of the 10830 \AA spectral region provide full Stokes vectors
which were analyzed using three different methods: magnetograph analysis,
Milne-Eddington inversions and PCA-based atomic polarization inversions. The
inferred magnetic field strengths in the filament are of the order of 600 - 700
G by all these three methods. Longitudinal fields are found in the range of 100
- 200 G whereas the transverse components become dominant, with fields as large
as 500 - 600 G. We find strong transverse fields near the Neutral Line also at
photospheric levels. Our analysis indicates that strong (higher than 500 G, but
below kG) transverse magnetic fields are present in Active Region filaments.
This corresponds to the highest field strengths reliably measured in these
structures. The profiles of the Helium 10830 \AA lines observed in this Active
Region filament are dominated by the Zeeman effect.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 4
figure
- …