16 research outputs found

    Septin‐based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles

    Get PDF
    International audienceSeptins constitute a novel class of cytoskeletal proteins. Budding yeast septins self-assemble into non-polar filaments bound to the inner plasma membrane through specific interactions with L-α-phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). Biomimetic in vitro assays using Giant Unilamellar Vesicles (GUVs) are relevant tools to dissect and reveal insights in proteins-lipids interactions, membrane mechanics and curvature sensitivity. GUVs doped with PI(4,5)P2 are challenging to prepare. This report is dedicated to optimize the incorporation of PI(4,5)P2 lipids into GUVs by probing the proteins-PI(4,5)P2 GUVs interactions. We show that the interaction between budding yeast septins and PI(4,5)P2 is more specific than using usual reporters (phospholipase C1). Septins have thus been chosen as reporters to probe the proper incorporation of PI(4,5)P2 into giant vesicles. We have shown that electro-formation on platinum wires is the most appropriate method to achieve an optimal septin-lipid interaction resulting from an optimal PI(4,5)P2 incorporation for which, we have optimized the growth conditions. Finally, we have shown that PI(4,5)P2 GUVs have to be used within a few hours after their preparation. Indeed, over time, PI(4,5)P2 is expelled from the GUV membrane and the PI(4,5)P2 concentration in the bilayer decreases

    Chapitre 7 - Les relations entre ville et agriculture au prisme de l’innovation territoriale

    Get PDF
    RĂ©sumĂ©. Le concept d’innovation territoriale est mobilisĂ© dans la littĂ©rature pour analyser les rapports entre centre et pĂ©riphĂ©rie, la qualitĂ© des milieux et la gouvernance territoriale. Nos recherches reprennent ce concept pour saisir les multiples dimensions des relations entre ville et agriculture et pour comprendre ainsi les transformations de l’agriculture dans le contexte de la sociĂ©tĂ© urbaine. Nous analysons pour cela les agencements sociaux, spatiaux et organisationnels qui s’opĂšrent dans les initiatives agri-urbaines locales. À partir d’une chronique de la place prise par l’agriculture dans l’amĂ©nagement urbain et dans les politiques locales, l’exemple de Montpellier permet d’illustrer comment ces agencements agri-urbains sont sources d’innovation territoriale. En effet, l’innovation devient territoriale par accumulation de micro-changements, qui finissent par inflĂ©chir des fonctionnements Ă©tablis dans les usages et les normes qui rĂ©gulent les relations entre ville et agriculture. Ce processus de passage Ă  une plus grande Ă©chelle (scaling up) ouvre un champ de recherche sur les relations entre innovations territoriales et transitions globales

    Innovation et développement dans les systÚmes agricoles et alimentaires

    Get PDF
    L’innovation est souvent prĂ©sentĂ©e comme l’un des principaux leviers pour promouvoir un dĂ©veloppement plus durable et plus inclusif. Dans les domaines de l’agriculture et de l’alimentation, l’innovation est marquĂ©e par des spĂ©cificitĂ©s liĂ©es Ă  sa relation Ă  la nature, mais aussi Ă  la grande diversitĂ© d’acteurs concernĂ©s, depuis les agriculteurs jusqu’aux consommateurs, en passant par les services de recherche et de dĂ©veloppement. L’innovation Ă©merge des interactions entre ces acteurs, qui mobilisent des ressources et produisent des connaissances dans des dispositifs collaboratifs, afin de gĂ©nĂ©rer des changements. Elle recouvre des domaines aussi variĂ©s que les pratiques de production, l’organisation des marchĂ©s, ou les pratiques alimentaires. L’innovation est reliĂ©e aux grands enjeux de dĂ©veloppement : innovation agro-Ă©cologique, innovation sociale, innovation territoriale, etc. Cet ouvrage porte un regard sur l’innovation dans les systĂšmes agricoles et alimentaires. Il met un accent particulier sur l’accompagnement de l’innovation, en interrogeant les mĂ©thodes et les organisations, et sur l’évaluation de l’innovation au regard de diffĂ©rents critĂšres. Il s’appuie sur des rĂ©flexions portĂ©es par diffĂ©rentes disciplines scientifiques, sur des travaux de terrain conduits tant en France que dans de nombreux pays du Sud, et enfin sur les expĂ©riences acquises en accompagnant des acteurs qui innovent. Il combine des synthĂšses sur l’innovation et des Ă©tudes de cas emblĂ©matiques pour illustrer les propos. L’ouvrage est destinĂ© aux enseignants, professionnels, Ă©tudiants et chercheurs

    How curvature-generating proteins build scaffolds on membrane nanotubes

    Get PDF
    International audienceBin/Amphiphysin/Rvs (BAR) domain proteins control the curvature of lipid membranes in endocytosis, trafficking, cell motility, the formation of complex subcellular structures, and many other cellular phenomena. They form 3D assemblies that act as molecular scaffolds to reshape the membrane and alter its mechanical properties. It is unknown, however, how a protein scaffold forms and how BAR domains interact in these assemblies at protein densities relevant for a cell. In this work, we use various experimental, theoretical, and simulation approaches to explore how BAR proteins organize to form a scaffold on a membrane nanotube. By combining quantitative microscopy with analytical modeling, we demonstrate that a highly curving BAR protein endophilin nucleates its scaffolds at the ends of a membrane tube, contrary to a weaker curving protein centaurin, which binds evenly along the tube's length. Our work implies that the nature of local protein-membrane interactions can affect the specific localization of proteins on membrane-remodeling sites. Furthermore, we show that amphipathic helices are dispensable in forming protein scaffolds. Finally, we explore a possible molecular structure of a BAR-domain scaffold using coarse-grained molecular dynamics simulations. Together with fluorescence microscopy, the simulations show that proteins need only to cover 30-40% of a tube's surface to form a rigid assembly. Our work provides mechanical and structural insights into the way BAR proteins may sculpt the membrane as a high-order cooperative assembly in important biological processes

    Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects.

    No full text
    International audienceAlpha-synuclein (AS) is a synaptic protein that is directly involved in Parkinson's disease due to its tendency to form protein aggregates. Since AS aggregation can be dependent on the interactions between the protein and the cell plasma membrane, elucidating the membrane binding properties of AS is of crucial importance to establish the molecular basis of AS aggregation into toxic fibrils. Using a combination of in vitro reconstitution experiments based on Giant Unilamellar Vesicles (GUVs), confocal microscopy and all-atom molecular dynamics simulations, we have investigated the membrane binding properties of AS, with a focus on the relative contribution of hydrophobic versus electrostatic interactions. In contrast with previous observations, we did not observe any binding of AS to membranes containing the ganglioside GM1, even at relatively high GM1 content. AS, on the other hand, showed a stronger affinity for neutral flat membranes consisting of methyl-branched lipids. To rationalize these results, we used all-atom molecular dynamics simulations to investigate the influence of methyl-branched lipids on interfacial membrane properties. We found that methyl-branched lipids promote the membrane adsorption of AS by creating shallow lipid-packing defects to a larger extent than polyunsaturated and monounsaturated lipids. Our findings suggest that methyl-branched lipids may constitute a remarkably adhesive substrate for peripheral proteins that adsorb on membranes via hydrophobic insertions

    Methyl-branched lipids promote the membrane adsorption of α-synuclein by enhancing shallow lipid-packing defects

    No full text
    Alpha-synuclein (AS) is a synaptic protein that is directly involved in Parkinson's disease due to its tendency to form protein aggregates. Since AS aggregation can be dependent on the interactions between the protein and the cell plasma membrane, elucidating the membrane binding properties of AS is of crucial importance to establish the molecular basis of AS aggregation into toxic fibrils. Using a combination of in vitro reconstitution experiments based on Giant Unilamellar Vesicles (GUVs), confocal microscopy and all-atom molecular dynamics simulations, we have investigated the membrane binding properties of AS, with a focus on the relative contribution of hydrophobic versus electrostatic interactions. In contrast with previous observations, we did not observe any binding of AS to membranes containing the ganglioside GM1, even at relatively high GM1 content. AS, on the other hand, showed a stronger affinity for neutral flat membranes consisting of methyl-branched lipids. To rationalize these results, we used all-atom molecular dynamics simulations to investigate the influence of methyl-branched lipids on interfacial membrane properties. We found that methyl-branched lipids promote the membrane adsorption of AS by creating shallow lipid-packing defects to a larger extent than polyunsaturated and monounsaturated lipids. Our findings suggest that methyl-branched lipids may constitute a remarkably adhesive substrate for peripheral proteins that adsorb on membranes via hydrophobic insertions
    corecore