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Bin/Amphiphysin/Rvs (BAR) domain proteins control the curvature
o� ipid membranes in endocytosis, traf�cking, cell motility, the
formation of complex sub-cellular structures, and many other cel-
lular phenomena. They form three-dimensional assemblies, which
act as molecular sca�olds to reshape the membrane and alter its
mechanical properties. It is unknown, however, how a protein
sca�old forms and how BAR domains interact in these assemblies
at protein densities relevant for a cell. In this work, we em-
ploy various experimental, theoretical and simulation approaches
to explore how BAR proteins organize to form a sca�old on
a membrane nanotube. By combining quantitative microscopy
with analytical modeling, we demonstrate that a highly curving
BAR protein endophilin nucleates its sca�olds at the ends of a
membrane tube, contrary to a weaker curving protein centaurin,
which binds evenly along the tube’s length. Our work implies that
the nature o� ocal protein-membrane interactions can a�ect the
speci�c localization of proteins on membrane-remodeling sites.
Furthermore, we show that amphipathic helices are dispensable in
forming protein sca�olds. Finally, we explore a possible molecular
structure of a BAR-domain sca�old using coarse-grained molecular
dynamics simulations. Together with �uorescence microscopy, the
simulations show that proteins need only to cover 30–40% of
a tube ’s surface to form a rigid assembly. Our work provides
mechanical and structural insights into the way BAR proteins may
sculpt the membrane as a high-order cooperative assembly in
important biological processes.

protein sca�old | BAR proteins | coarse-grained simulations

Introduction
Curvature o� ipid membranes plays important roles in the cell.
It allows dynamic cellular phenomena, such as tra�cking or
cell division, and it can also mediate the interactions among
many membrane-bound proteins (1, 2). Proteins containing a
Bin/Amphiphysin/Rvs (BAR) domain participate in numerous
membrane-curving processes, such as endocytosis, tra�cking,
motility, the formation of T-tubules, cytokinesis, etc. (3, 4). BAR
domains are characterized by a crescent shape whose curvature,
length, and binding a�nity to the membrane are distinct among
di�erent members (4-6). Many BAR proteins also contain am-
phipathic helices that shallowly insert into the bilayer.

BAR proteins generate curvature as a combination of (a),
adhesive electrostatic interactions via their BAR domain and (b),
the insertion of amphipathic helices. Additionally, BAR proteins
can associate into highly ordered assemblies on the membrane
thus collectively altering its shape andmechanics (7-10). Precisely
how they assemble and a�ect the membrane is argued to depend
on the surface density of proteins, membrane tension, and mem-
brane shape (11). On a �at membrane at a low surface density,
BAR proteins can form strings and a mesh-like network, which
can give rise to budding and tubulation (12-16). At a su�ciently
high protein density, they impact themechanical properties of the
membrane and stabilize membrane nanotubes (7, 10, 17-20).

An assembly of BAR proteins on cylindrical membranes has
so far only been visualized using electron microscopy (EM), e.g.
(8, 9, 21). While these studies provide important and detailed as-
sessments of how BAR domainsmay interact with one another on
curved membranes as a packed protein arrangement, membrane
tubules in those experiments were generated typically from highly
charged liposomes exposed to very high protein concentrations.
In the cell, especially in the context of endocytosis, protein con-
centration is not high enough to induce appreciable spontaneous
tubulation, nor would such a mechanism be bene�cial to the cell.
Importantly, a tightly packed assembly of BAR proteins would
preclude the recruitment of many other proteins required in
endocytosis and tra�cking.

To achieve close packing, protein-protein interactions were
implicated to be important, namely the lateral interactions be-
tween neighboring BAR domains in F-BAR proteins (8) or be-
tween N-terminal amphipathic helices in N-BAR proteins (9). It
is unclear whether BAR proteins in endocytosis and tra�cking
cooperatively shape the membrane by virtue of speci�c protein-
protein interactions or if they assemble as a result of a more gen-
eral membrane-mediated mechanism. Moreover, it is important
to understand how BAR proteins assemble at much lower protein
surface densities and onmembrane compositions thatmuchmore
likely resemble those found within the cell.

We hypothesize that BAR proteins can oligomerize on a
membrane nanotube at densities much lower than close packing

Signi�cance

Lipid membranes are dynamic assemblies, changing shape on
nano- to micron-sized scales. Some proteins can sculpt mem-
branes by organizing into a molecular sca�old, dictating the
membrane ’s shape and properties. We combine microscopy,
mathematical modeling, and simulations to explore how BAR
proteins assemble to form sca�olds on nanotubes. We show
that the way protein locally deforms the membrane a�ects
where it will nucleate before making a sca�old. In this process,
the protein ’s amphipathic helices —which shallowly insert into
the membrane —appear dispensable. Surprisingly, the sca�old
forms at low protein density on the nanotube. We simulate
a structure of protein sca�olds at molecular resolution, shed-
ding light on how these proteins may sculpt the membrane to
facilitate important dynamic events in cells.



Fig. 1. Sca�olding by endophilin A2. (A) Endophilin A2 N-BAR domain (aa
1–247) binds to the tube ’s base and forms a sca�old that continuously grows
along the tube (note the progressive constriction in the tube radius from
the GUV toward the OT). White circle = OT. (B) A kymogram of sca�old
growth from the GUV to the bead (�uorescence dims near the end as the
tube buckles in and out o� ocus). Lipid and protein channels are overlaid.
The plot shows tube-retraction force, f , as a function of time, t . The x-axis
of the kymogram coincides with the x-axis of the plot. (C) Time lapse of a
striated pattern induced by endophilin A2 N-BAR domain. In all: scale bar,
2 μm; GUV, giant unilamellar vesicle; OT, optical trap; endo, endophilin A2
N-BAR domain; t = 0 marks the time when protein was detected on the tube.

Fig. 2. Sca�olding by N-BAR versus BAR domains. (A) β2 centaurin BAR
domain (aa 1-384) binds evenly along the tube (red: lipid; green: protein) and
causes a decrease in tube-retraction force, f , just like endophilin. Scale bar, 2
μm. (B) Dilation of a narrow tube induced by a sca�old of β2 centaurin BAR
domain (overlaid are �uorescence intensity of the protein on the tube, Itub ,
and the tube radius, r , deduced from lipid �uorescence). (C) The mechanics
of the reference membrane ( N = 45) and after the formation of a sca�old
by endophilin A2 WT (endo WT, N = 7) and β2 centaurin (centa, N = 5). Tube
force, f, measured from the optical trap; tube radius, r , measured from lipid
�uorescence.

Table 1. Radius ( r ) of sca�olded tubes measured from lipid
�uorescence. Mean ±SD (N measurements). Endo WT = wild-type
endophilin A2 (data from the full length protein and the N-BAR
domain is pooled); endo ΔH0 = endophilin A2 with truncated
N-terminal helices; endo mut = endophilin A2 N-BAR domain
E37K, D41K.

endo WT endo ΔH0 endo mut centa

r (nm) 9.8 ±2.8 (10) 21.4 ±11.6 (7) 19.9 ±3.0 (7) 42.5 ±7.0 (5)

Fig. 3. Amphipathic helices do not determine the sca�old initiation site.
Shown are force plots (white) overlaid on kymograms o� ipid �uorescence
of a membrane nanotube (red marker) during binding and sca�olding by
endophilin mutants. As before, the formation of a sca�old is evident from
tube constriction. Endo ΔH0 = endophilin A2 with truncated N-terminal
helices; endo mut = endophilin A2 N-BAR domain E37K, D41K.

Fig. 4. Strongly-curving proteins nucleate at the base of a pinned and
�uctuating tube. Mathematical model: strain energy variation pro�le, E, as a
function of the axial position on the tube, z (in percentage of total length),
plotted using = 0.25% (orange) and 0.05% (blue), = 50 kBT , = 100.

Fig. 5. Simulation of N-BAR domains on nanotubes. Shown are �nal
snapshots of CG MD simulations of membrane tubes coated with N-BAR
proteins at the indicated protein surface densities. Scale bar, 20 nm.

owing to membrane-mediated attractions. We refer to this struc-
ture as a protein sca�old. It is to be noted that the term sca�old is
often used to describe a single BAR domain, imprecisely termed
the sca�olding domain. Here, a sca�old represents a three-
dimensional rigid assembly of multiple proteins that adheres
to the membrane and a�ects the shape and properties of the
membrane.

In this work, we combine in vitro reconstitution, �uorescent
microscopy, mechanical measurements, and analytical modeling



to describe the mechanism by which BAR proteins assemble on
membrane nanotubes to form a sca�old. We also demonstrate
that rigid protein sca�olds form at much lower surface densities
than full packing. We simulate the protein sca�old at molecular
resolution using coarse-grained (CG) molecular dynamics (MD).

Finally, as the relative contribution of BAR domain versus
amphipathic helices in inducing curvature is still highly debated,
we explore how these domains contribute to the sca�old forma-
tion. To this end, we tested three proteins with well-distinguished
structural features: endophilin A2 (an N-BAR protein containing
four amphipathic helices), endophilin A2 mutants, β2-centaurin
(a classical BAR domain with no amphipathic helices), and epsin
1 (a protein that binds membranes via an amphipathic helix in its
epsin N-terminal homology domain).

Results
Endophilin sca�old initiates at the base of a tube. To study the
interactions of BAR proteins with a cylindrical membrane, we
used a previously developed micromanipulation setup (7). In the
experiment, we pull a nanotube from a giant unilamellar vesicle
(GUV) using optical tweezers. A nanotube connected to the
base membrane is a typical con�guration characteristic of some
endocytic processes, such as in a clathrin-independent endocytic
mechanism mediated by endophilin (22, 23). The vesicle is held
by a micropipette whose aspiration pressure sets the membrane
tension, implicitly tube radius, in the absence of proteins (24, 25)
(see SI Text). Thus, we have a direct control of the initial radius
of curvature, which in our case ranges from � 10 nm to � 100 nm
(7). With another micropipette, we inject the protein near the
tube, starting from low vesicle tension. The N-BAR domain of
the wild-type endophilin A2 and β2 centaurin (BAR + pleckstrin
homology domain) were �uorescently labeled so that we could
directly observe their binding to the membrane with confocal
microscopy. By measuring the lipid and the protein �uorescence,
we can calculate the tube radius and the protein’s surface density,
respectively (7) (see Fig. S1 and SI Text). Therefore, at the same
time, we observe how proteins a�ect the shape of the membrane,
while controlling membrane tension and membrane curvature.

We prepared GUVs using a total lipid brain extract, supple-
mented with 5% PI(4,5)P 2. As such a natural composition has
not yet been used for quantitative mechanical measurements (26,
27), we con�rmed that the membrane curvature scales with GUV
tension as theoretically expected for �uid membranes (25) and
that these vesicles are not undergoing phase separation (28) (see
SI Text, Figs. S2 and S3).

First, we studied how the N-BAR of endophilin A2 (29, 30)
(Fig. S4) forms a sca�old on a membrane tube, by injecting the
protein at 0.5–2 5 µM (dimeric concentration in the pipette). Note
that due to di�usion, the concentration of the protein near the
GUV is approximately half that in the pipette (31). Endophilin
showed a remarkable speci�city for the base of a pulled nanotube,
binding �rst either at the interface with the vesicle or with the
trapped bead (Fig. 1A). Note that the two interfaces are mor-
phologically equivalent, having the same saddle-like membrane
geometry. Out of 59 experiments, endophilin �rst bound to the
GUV-tube interface in 53 of them, while also simultaneously
binding to the interface with the bead in 27 experiments. In four
cases, endophilin appeared to bind homogeneously along the tube
where, possibly, the initial binding was not recorded su�ciently
fast. Only in the two remaining cases considered as negative, the
protein �rst bound to a region other than the interface.

Shortly after binding, the region covered by endophilin con-
tinuously grew along the tube eventually partially or fully covering
it (Fig. 1 A and B; see SI Text for additional statistics). In most
cases, the growth of the endophilin sca�old was linear and it
ranged from � 20 nm.s−1 to � 300 nm.s−1 (Fig. 1 B , see also Fig.
S5 and Movie S1).

The marked reduction of the lipid �uorescence intensity
underneath the protein (Fig. 1 A , lipid channel) indicates that en-
dophilin changes the tube radius independently of GUV tension.
Hence, it forms a stable three-dimensional structure that dictates
the membrane curvature. Tube constriction has previously been
observed with other members of the BAR family (7, 22, 32), al-
though the dynamics of sca�old formation has not been captured.
Binding and constriction under the sca�old are concomitant with
the progressive drop in force required to hold the nanotube (Fig.
1B ). A fully covered tube at low GUV tension imposes no force
on the optical trap and undergoes buckling (see the deformation
of the tube in the bottom panel of Fig. 1A , also see Movie S1). Of
note, in the experiments, the proteins are also bound to the GUV
(see e.g. Fig. 1 A).

We observed no di�erence in the tube-binding behavior be-
tween the full-length endophilin A2 (N-BAR + SH3 domain) and
only its N-BAR domain, indicating that the location of sca�old
initiation is not determined by the protein ’s SH3 domain (Fig. S5).

Interestingly, sometimes at higher injected concentrations
(>1 5 µM in the injection pipette), endophilin initially formed a
striated pattern on the nanotube, marked by a brief (few seconds)
beading instability (Fig. 1 C , observed in six out of 31 experi-
ments). The striation rapidly coarsened leading to a growth of the
sca�old fromboth bases of the tube. To some extent, this behavior
is reminiscent of the way dynamin binds to membrane tubes.
Dynamin binds in a striated pattern and a�ects the membrane
force. In the case of dynamin, however, the membrane force
changes only after the entire tube is covered with the protein (33,
34), contrary to endophilin, in which case a decrease in the force
is seen immediately upon binding.

Role of protein subdomains in sca�olding. We then aimed to
examine how changing the intrinsic curvature and the presence of
amphipathic helices a�ect the sca�olding dynamics. β2 centaurin
provides a good testing ground, as it is one o� ew BAR pro-
teins without an N-terminal amphipathic helix (35). Additionally,
the BAR domain of centaurin is much shallower than that of
endophilin, as judged by their atomic models (see SI Text, Fig.
S4). Contrary to endophilin, centaurin bound homogeneously
along the nanotube, with no detectable preference to the neck
(Fig. 2 A). Nevertheless, there was a reduction in the membrane
force during binding, leading to a buckling instability at low
tension (Fig. 2 A). Importantly, binding of the protein changed
the curvature of the tube, even though the aspiration pressure
remained the same. Figure 2 B shows an example where binding
of β2 centaurin dilates a 30-nm tube by � 20 nm. Furthermore,
once the sca�old forms, either by centaurin or endophilin, the
tube radius remains constant; its magnitude is characteristic of
the protein, but independent of GUV tension (Fig. 2 C ). Namely,
the tube sca�olded by centaurin is approximately four timeswider
than the one sca�olded by endophilin (42.5 nm compared to 10
nm, see Table 1). This observation is in line with the di�erence in
intrinsic curvatures of their BAR domains (Fig. S4).

The formation of a sca�old by either endophilin or centaurin
also drastically changes the mechanics of the membrane, evident
from the systematic reduction in the equilibrium tube force for all
testedmembrane tensions (Fig. 2C ). Based on previous analytical
modeling, the force of a sca�olded tube—characterized by a
constant radius—is expected to linearly depend on GUV tension,
whereas a bare membrane is expected to have a square-root
dependence (7, 25). Indeed, membrane force of protein-covered
tubes in experiments shown in Fig. 2C display a linear dependence
on tension (Fig. S6), thus con�rming the formation of a sca�old
by a measurement independent of tube radius.

These experiments demonstrate that both BAR domains that
contain membrane inserting amphipathic helices (endophilin)
and those that do not (β2 centaurin) are capable o� orming a
rigid structure that controls the curvature of the membrane. They



also show that proteins from the same family may bind to the
membrane at di�erent locations (we explore this point in the next
section).

To further investigate the role of amphipathic helices versus
the BAR domain in sca�olding, we constructed two endophilin
mutants. In the �rst, we truncated the N-terminal amphipathic
helix of the full-length endophilin A2 (endo △H0). In the sec-
ond, we mutated one glutamate and one aspartate from the
membrane-binding region of endophilin A2 N-BAR domain into
lysines (E37K, D41K) (endo mut), which enhances the binding
strength of the BAR domain to the membrane. Both variants
constricted the tube starting from an interface (Fig. 3, red �uo-
rescence) and decreased the force (Fig. 3, white plot) and tube
radius (Table 1), in the same manner as the WT. This observa-
tion con�rms that the N-terminal amphipathic helices are not
necessary for the formation of the sca�old or, interestingly, for
the preferential binding to the tube’s base in these experiments,
although the sca�olding rate appears slower (Fig. 3).

Finally, we tested the full-length epsin 1, another impor-
tant endocytic protein, which participates in the initial stages
of clathrin-mediated endocytosis (36). Epsin does not contain
a BAR domain; instead, it binds and bends the membrane via
an amphipathic helix. There was a clear mechanical e�ect upon
the injection of epsin 1, characterized by a systematic reduction
in both the equilibrium tube force and the tube radius for a
wide range of membrane tensions, indicating that the protein
induces positive spontaneous curvature (7) (Fig. S7). Similarly to
centaurin, the constriction did not start from the base; rather it
appeared homogenous along the tube length. Unlike endophilin
and centaurin, the force never decreased to zero and so we never
observed buckling. The square-root scaling of the force with
membrane tension (Fig. S6) indicates that no sca�old forms, even
at very high protein concentration (ten-fold higher than minimal
endo WT concentration that makes a sca�old). In summary,
amphipathic helices alone may remodel the membrane, as in the
case of epsin. However, the anisotropic BAR domain is critical
for forming a rigid sca�old.

Pinning a �uctuating tube determines the protein ’s binding
site. So far, we demonstrated that BAR proteins lacking am-
phipathic helices may form sca�olds just as N-BAR proteins,
however it is still unclear what determines the nucleation site of
the protein. Our experiments cannot provide a general mecha-
nism to answer this question and so we developed a mathemat-
ical model of BAR proteins interacting with a membrane tube.
Several models have already been proposed for an equivalent
system (7, 37), but those models did not capture the location of
protein nucleation. We extend these models in two ways. First,
we generalize the protein-membrane interactions by assuming
that the proteins induce a local perturbation, expressed in terms
of a tension or a pressure variation. Second, instead of taking
periodic boundary conditions, wemodel amembrane tube pinned
at its ends assuming that the radial displacement of the bilayer is
strongly limited at the one end by the optical trap and on the other
by the vesicle.

As we show in the SI Text in detail, we decompose the free
energy into the costs of (a) bending and (b) stretching the mem-
brane, supplemented by (c) a term accounting for membrane-
protein interactions, and (d) the energy associated with a point
force keeping the membrane tubular (Eq. S14) (25, 37, 38).
Solving the equation in the limit o� ow protein concentration, we
obtain the mechanical strain energy variation (Eq. S17) induced
by membrane-protein interactions, whose minima essentially in-
dicate the binding sites of the protein. Importantly, the shape
of this function strongly depends on the protein-induced local
tension (or curvature) perturbation. When taking a local tension
variation of 0.25%, the energy pro�le has a minimum at each
of the tube’s ends separated by a very high energy barrier at the

tube’s center (Fig. 4). Reducing the local perturbation �ve-fold
to 0.05% lowers the barrier to <1 kB T and thermal �uctuations
dominate (Fig. 4, see also SI Text, Fig. S8).

According to our model, proteins that signi�cantly impact
the local structure of the membrane preferentially bind to the
necks of a pinned �uctuating tube. This conclusion is in excellent
agreement with our observations. Endophilin A2, displaying a
much higher intrinsic curvature o� ts N-BAR domain (Fig. S4 A)
and having four amphipathic helices (Fig. 2, Table 1) is expected
to very strongly locally perturb the bilayer, which is why it clearly
nucleates at the tube-vesicle interface. β2 centaurin, on the other
hand, displays a shallow curvature of the BAR domain (Fig. 2,
Table 1) and lacks amphipathic helices, which is why it binds
homogenously along the tube. Both endophilin mutants were
found to localize at the tube’s base. For the mutant that binds
stronger to the membrane, this observation is not surprising in
light of our theory. Surprisingly, however, endo △H0 is also found
at the base despite lacking N-terminal helices. It appears that
the shape and charge of endophilin’s BAR domain and the short
insert helices present at the BAR-domain dimerization interface
impose su�cient local bilayer perturbation to determine the
protein’s localization.

Recall that our model is valid in the dilute limit, therefore
it cannot account for the emergence of the striated pattern that
require a higher protein density. A previously developed model
explaining FtsZ rings on tubes can be applied here instead (39).
That model predicts that a higher protein concentration induces
a uniformly unstable tube at a given tension, leading to a dynamic
instability that promotes local protein condensates, separated by
an energy barrier. Based on our experiments, this con�guration
is transient, as the sca�old readily covers the tube within a few
seconds.

BAR sca�old is not densely packed on the tube. In previous
sections we discussed the mechanism of protein nucleation and
the mechanical aspects of protein sca�olds. We now explore the
potential molecular structure of sca�olds after they have formed.
Previous EM images and CG simulations have revealed that at
very high protein to lipid ratios, N-BAR proteins amphiphysin
and endophilin very densely assemble on liposomes, transforming
100–400 nm vesicles into tubules and tubular networks (9, 19, 40).
Prior �uorescence microscopy experiments have shown that N-
BARs form sca�olds when their density on the GUV exceeds
� 1000 µm−2 (� 5% areal fraction if taking 50 nm 2 as the area of
the protein) (7, 10). We found a similar quantitative behavior for
the BAR protein β2 centaurin. Namely, in our experiments, we
measured an areal density of the protein dimer to be 3600±830
µm−2 on the GUV (18% coverage, N = 5; see SI Text for details
on density measurements). As expected due to curvature sorting,
the surface density on the tube was somewhat higher, measuring
7400±1800 µm−2 (35% coverage). The surface density of dimeric
endophilin A2 N-BAR domain on the tube was comparable,
measuring 8800±5300 µm−2 (43% coverage N = 4), with a cor-
responding density on the GUV 1650 ±750 µm−2 (8% coverage).
Both measurements are comparable to 25% previously measured
for amphiphysin (7).

Our experiments therefore indicate that proteins do not need
to be densely packed to form a sca�old as seen in EM experiments
in vitro. To understand the structure of the sca�old at molecular
resolution, we performed CG MD simulations of endophilin ’s N-
BAR domain on a 20-nm-wide lipid bilayer tube. We placed N-
BARs at 5%, 10, 30%, and 40% surface coverage, starting either
from a random or a tightly packed con�guration, and carried out
� 30 million simulation time steps.

Regardless of the initial assembly of proteins and the protein
density, we observed that N-BAR domains readily interacted with
one another along their longitudinal axis, forming strings (Fig.
5). This arrangement resembles the membrane-mediated linear



aggregation previously predicted for N-BAR proteins and, to a
weaker degree, spherical particles (12-14, 41). Under con�ne-
ment (on a �at or spherical surface), the proteins pack into amesh
(12), however it appears that a tubular surface directs the proteins
into a helix, with 7–8 N-BAR domains making a full helical turn
(Fig. 5).

We note that in CG MD simulations the helix contiguously
wraps the tubule at 30–40% protein coverage, in excellent agree-
ment with the experimentally measured sca�old density. Once
attaining this density, the proteins cease to exchange neighbors
and the helix becomes quasi-static (Fig. 5, see SI Text, Fig. S9).

Discussion
Two related curvature-generating proteins can initiate a sca�old
at di�erent membrane locations, as shown by our in vitro recon-
stituted system. Namely, an N-BAR protein endophilin nucleates
at the tube’s ends, whereas a BAR protein centaurin binds evenly
along it. Our mathematical modeling predicts that speci�c bind-
ing to the saddle-shaped neck of a pinned and �uctuating mem-
brane tube is a consequence of strong local membrane pertur-
bations. An important conclusion from these observations is that
the nature o� ocal protein-membrane interactions can a�ect the
speci�c initial localization of proteins on curved membranes and,
thus, the dynamics of their assembly on membrane-remodeling
sites.

Although the complexity ofmulti-protein interactionsmay di-
vert the nucleation preference of BAR proteins in a cell, previous
in vivo studies of endocytosis seem to very well agree with our
�ndings. Immunoelectron microscopy of endophilin on clathrin-
coated pits in cells at endogenous protein concentrations showed
that endophilin indeed sits at the base of the clathrin coat (42).
In the same study, in cells treated with a non-hydrolysable GTP,
which form long dynamin-covered tubes, endophilin was again
only found at the base of the coat (42). By contrast, dynamin was
found all along the tubule’s length.

Endophilin interacts with other proteins in a dynamic way.
Namely, the tubulation e�ciency and the amount of dynamin
recruited to GUVs or lipid tubules are signi�cantly increased
by endophilin, and vice versa (42, 43). Furthermore, acutely
perturbing endophilin using antibodies against the SH3- or the
BAR-domain stalled the formation of clathrin-coated pits before
the sculpting of a narrow neck and the saddle (44, 45). Hence,
endophilin could potentially play important roles in directing
other endocytic proteins to their binding site.

Concerning protein ’s subdomains, BAR domain appears cru-
cial for the formation of a rigid sca�old. As previously demon-
strated on a �at membrane, local membrane deformations me-
diate the interactions among BAR proteins and induce their as-
sembly. The anisotropic shape of the BAR domain likely further
facilitates an ordered packing and the formation of a sca�old.
Therefore, a BAR domain is indeed a sca�olding domain, al-
though not because a single protein imprints its shape on the
membrane, but owing to a collective e�ect imposed by an ordered
membrane-mediated helical assembly. Moreover, amphipathic
helices appear dispensable in sca�olding; however, their role is
still important in facilitating protein recruitment to the mem-
brane (22) and in increasing the membrane ’s spontaneous cur-
vature (Table 1). They may also have a role at the molecular level
to help properly orient the BAR domains into a rigid sca�old,
evidenced by the wide distribution of tubular radii when they are
truncated (Table 1) (22), agreeing with previous work (9).

Importantly, our results show that a sca�old can form atmuch
lower surface densities than full packing. Dense protein packing
would be problematic for endocytosis. According to previous
simulations, the shape of a basic unit of a BAR-domain lattice on
the membrane a�ects the radius of the sca�old (18). Therefore,
the radius of the tubule sca�olded by the same protein would

be variable, depending on the way it formed the lattice, which
seems unfavorable for endocytosis and tra�cking that require
a tight curvature control. Indeed, tubule radii from di�erent in
vitro studies were infrequently di�erent for the same protein. For
example, tubule radii formed and sca�olded by amphiphysin 1 in
vitro (measured between themembranemidplanes) were found to
be 21 nm (35) and � 11 nm (46), both based on EM imaging, com-
pared to 7 nmmeasured by �uorescencemicroscopy (7). Based on
our combined experimental and simulation data, under protein
concentrations much lower than used in EM imaging in vitro,
BAR proteins do not build lattices on pre-formed tubes. Instead,
they only cover 30–45%of the surface (depending on the protein),
forming a stable and a rigid sca�old with constant curvature, in
resemblance to in vivo EM images in which membrane tubules
were created in the cell by endogenous protein concentrations
(42, 47). In turn, this assembly provides structural integrity for
endocytosis and leaves su�cient membrane area for the binding
of accessory proteins crucial in the process (42, 46, 48).

Based on our work, we can propose di�erent biologically rel-
evant purposes for the N-BAR domain sca�olds. First, in endo-
cytosis, they constrict the membrane tube between the endocytic
vesicle and the underlying membrane, thus reducing the energy
barrier for scission by dynamin (33) or by elongation forces (22).
Second, highly curving proteins like endophilin are speci�cally
recruited to the neck and so in clathrin-dependent endocytosis,
where endophilin recruits dynamin to the tube (43), the scission
site will be highly localized to the base of the coat. Third, sca�olds
provide a powerful control of membrane curvature that may
be used in forming complex cellular architectures, such as in
the formation of T-tubules or the maintenance of mitochondrial
shape, which require N-BAR proteins amphiphysin 2 (49) and
endophilin B1 (50), respectively. The subtle di�erences in struc-
tures of these proteins give rise to a complexity in intracellular
architectures and the highly dynamic behavior of the membrane.
These di�erences are also likely the key way of modulating
the function and localization of BAR proteins. We also expect
that in the near future, the higher-order organization of BAR
proteins will be shown crucial in additional important membrane-
remodeling phenomena.

Methods
Pulling nanotubes and making protein sca�olds. GUVs (95% total lipid
brain extract (26), 5% PI(4,5)P 2 , supplemented with 0.1% di-stearoyl phos-
phatidyl ethanolamine-PEG(2000)-biotin and 1% BODIPY TR ceramide) were
prepared by electroformation on Pt-wires over night at 4 °C in a salt-
containing bu�er (51). To pull a tube, the GUV was aspirated in a mi-
cropipette, brought in contact with a streptavidin-coated optically trapped
bead then gently pulled away. Proteins were injected near the tube with
another micropipette. The aspiration pressure sets the membrane tension

and the tube radius, r , in the absence of proteins, as , where
is membrane sti�ness and is membrane tension (7, 24, 52-54). The tube
force, f , was measured by video-microscopy as , where is
the trap sti�ness and and are the current and the equilibrium bead
positions, respectively. The r (in the presence or absence of proteins) was
measured from lipid �uorescence as , where and are
the �uorescence intensities o� ipids in the tube and in the GUV, respectively,
and = 200±50 nm is a previously measured calibration constant (7, 32).

CGMD simulations. We used a solvent-free three-site CG lipidmodel (55)
and a 26-site elastic network model of an N-BAR domain dimer of endophilin
A1 (9), with protein-membrane interactions modeled using a Lennard-Jones
potential as described previously (12). We simulated N-BARs on a lipid bilayer
tube (150 nm in length and 20 nm in diameter interacting with its periodic
images in the tube direction) at 5%, 10%, 30%, and 40% surface coverage.
The simulations were carried at constant number of molecules, box volume
and temperature ( NVT ) for � 30 million time steps at a time step of 12 fs
using LAMMPS (56).
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