124 research outputs found

    On Vertically Global, Horizontally Local Models for Astrophysical Disks

    Full text link
    Disks with a barotropic equilibrium structure, for which the pressure is only a function of the density, rotate on cylinders in the presence of a gravitational potential, so that the angular frequency of such a disk is independent of height. Such disks with barotropic equilibria can be approximately modeled using the shearing box framework, representing a small disk volume with height-independent angular frequency. If the disk is in baroclinic equilibrium, the angular frequency does generally depend on height, and it is thus necessary to go beyond the standard shearing box approach. In this paper, we show that given a global disk model, it is possible to develop approximate models that are local in horizontal planes without an expansion in height with shearing-periodic boundary conditions. We refer to the resulting framework as the vertically global shearing box (VGSB). These models can be non-axisymmetric for globally barotropic equilibria but should be axisymmetric for globally baroclinic equilibria. We provide explicit equations for this VGSB which can be implemented in standard magnetohydrodynamic codes by generalizing the shearing-periodic boundary conditions to allow for a height-dependent angular frequency and shear rate. We also discuss the limitations that result from the radial approximations that are needed in order to impose height-dependent shearing periodic boundary conditions. We illustrate the potential of this framework by studying a vertical shear instability and examining the modes associated with the magnetorotational instability.Comment: 24 pages, 8 figures, updated to match published versio

    Mineral Processing by Short Circuits in Protoplanetary Disks

    Full text link
    Meteoritic chondrules were formed in the early solar system by brief heating of silicate dust to melting temperatures. Some highly refractory grains (Type B calcium-aluminum-rich inclusions, CAIs) also show signs of transient heating. A similar process may occur in other protoplanetary disks, as evidenced by observations of spectra characteristic of crystalline silicates. One possible environment for this process is the turbulent magnetohydrodynamic flow thought to drive accretion in these disks. Such flows generally form thin current sheets, which are sites of magnetic reconnection, and dissipate the magnetic fields amplified by a disk dynamo. We suggest that it is possible to heat precursor grains for chondrules and other high-temperature minerals in current sheets that have been concentrated by our recently described short-circuit instability. We extend our work on this process by including the effects of radiative cooling, taking into account the temperature dependence of the opacity; and by examining current sheet geometry in three-dimensional, global models of magnetorotational instability. We find that temperatures above 1600 K can be reached for favorable parameters that match the ideal global models. This mechanism could provide an efficient means of tapping the gravitational potential energy of the protoplanetary disk to heat grains strongly enough to form high-temperature minerals. The volume-filling nature of turbulent magnetic reconnection is compatible with constraints from chondrule-matrix complementarity, chondrule-chondrule complementarity, the occurrence of igneous rims, and compound chondrules. The same short-circuit mechanism may perform other high-temperature mineral processing in protoplanetary disks such as the production of crystalline silicates and CAIs.Comment: 6 pages, 3 figures, ApJL published versio

    Short Circuits in Thermally Ionized Plasmas: A Mechanism for Intermittent Heating of Protoplanetary Disks

    Full text link
    Many astrophysical systems of interest, including protoplanetary accretion disks, are made of turbu- lent magnetized gas with near solar metallicity. Thermal ionization of alkali metals in such gas exceeds non-thermal ionization when temperatures climb above roughly 1000 K. As a result, the conductiv- ity, proportional to the ionization fraction, gains a strong, positive dependence on temperature. In this paper, we demonstrate that this relation between the temperature and the conductivity triggers an exponential instability that acts similarly to an electrical short, where the increased conductivity concentrates the current and locally increases the Ohmic heating. This contrasts with the resistiv- ity increase expected in an ideal magnetic reconnection region. The instability acts to focus narrow current sheets into even narrower sheets with far higher currents and temparatures. We lay out the basic principles of this behavior in this paper using protoplanetary disks as our example host system, motivated by observations of chondritic meteorites and their ancestors, dust grains in protoplanetary disks, that reveal the existence of strong, frequent heating events that this instability could explain.Comment: 9 pages, 6 figures, 1 table Accepted, Ap

    Phurbas: An Adaptive, Lagrangian, Meshless, Magnetohydrodynamics Code. II. Implementation and Tests

    Full text link
    We present an algorithm for simulating the equations of ideal magnetohydrodynamics and other systems of differential equations on an unstructured set of points represented by sample particles. The particles move with the fluid, so the time step is not limited by the Eulerian Courant-Friedrichs-Lewy condition. Full spatial adaptivity is required to ensure the particles fill the computational volume, and gives the algorithm substantial flexibility and power. A target resolution is specified for each point in space, with particles being added and deleted as needed to meet this target. We have parallelized the code by adapting the framework provided by GADGET-2. A set of standard test problems, including 1e-6 amplitude linear MHD waves, magnetized shock tubes, and Kelvin-Helmholtz instabilities is presented. Finally we demonstrate good agreement with analytic predictions of linear growth rates for magnetorotational instability in a cylindrical geometry. This paper documents the Phurbas algorithm as implemented in Phurbas version 1.1.Comment: 14 pages, 14 figures, ApJS accepted, revised in accordance with changes to paper I (arXiv:1110.0835

    GLOBAL SIMULATIONS OF PROTOPLANETARY DISKS WITH OHMIC RESISTIVITY AND AMBIPOLAR DIFFUSION

    Get PDF
    Protoplanetary disks are believed to accrete onto their central T Tauri star because of magnetic stresses. Recently published shearing box simulations indicate that Ohmic resistivity, ambipolar diffusion and the Hall effect all play important roles in disk evolution. In the presence of a vertical magnetic field, the disk remains laminar between 1-5au, and a magnetocentrifugal disk wind forms that provides an important mechanism for removing angular momentum. Questions remain, however, about the establishment of a true physical wind solution in the shearing box simulations because of the symmetries inherent in the local approximation. We present global MHD simulations of protoplanetary disks that include Ohmic resistivity and ambipolar diffusion, where the time-dependent gas-phase electron and ion fractions are computed under FUV and X-ray ionization with a simplified recombination chemistry. Our results show that the disk remains laminar, and that a physical wind solution arises naturally in global disk models. The wind is sufficiently efficient to explain the observed accretion rates. Furthermore, the ionization fraction at intermediate disk heights is large enough for magneto-rotational channel modes to grow and subsequently develop into belts of horizontal field. Depending on the ionization fraction, these can remain quasi-global, or break-up into discrete islands of coherent field polarity. The disk models we present here show a dramatic departure from our earlier models including Ohmic resistivity only. It will be important to examine how the Hall effect modifies the evolution, and to explore the influence this has on the observational appearance of such systems, and on planet formation and migration.Comment: 18 pages, 12 figures, accepted for publication in Ap

    Towards Equitable, Diverse, and Inclusive science collaborations: The Multimessenger Diversity Network

    Get PDF

    Observation of Cosmic Ray Anisotropy with Nine Years of IceCube Data

    Get PDF

    Searching for time-dependent high-energy neutrino emission from X-ray binaries with IceCube

    Get PDF

    A time-independent search for neutrinos from galaxy clusters with IceCube

    Get PDF
    corecore