77 research outputs found

    Diversity of Staphylococcus aureus Isolates in European Wildlife

    Get PDF
    Staphylococcus aureus is a well-known colonizer and cause of infection among animals and it has been described from numerous domestic and wild animal species. The aim of the present study was to investigate the molecular epidemiology of S. aureus in a convenience sample of European wildlife and to review what previously has been observed in the subject field. 124 S. aureus isolates were collected from wildlife in Germany, Austria and Sweden; they were characterized by DNA microarray hybridization and, for isolates with novel hybridization patterns, by multilocus sequence typing (MLST). The isolates were assigned to 29 clonal complexes and singleton sequence types (CC1, CC5, CC6, CC7, CC8, CC9, CC12, CC15, CC22, CC25, CC30, CC49, CC59, CC88, CC97, CC130, CC133, CC398, ST425, CC599, CC692, CC707, ST890, CC1956, ST2425, CC2671, ST2691, CC2767 and ST2963), some of which (ST2425, ST2691, ST2963) were not described previously. Resistance rates in wildlife strains were rather low and mecA-MRSA isolates were rare (n = 6). mecC-MRSA (n = 8) were identified from a fox, a fallow deer, hares and hedgehogs. The common cattle- associated lineages CC479 and CC705 were not detected in wildlife in the present study while, in contrast, a third common cattle lineage, CC97, was found to be common among cervids. No Staphylococcus argenteus or Staphylococcus schweitzeri-like isolates were found. Systematic studies are required to monitor the possible transmission of human- and livestock- associated S. aureus/MRSA to wildlife and vice versa as well as the possible transmission, by unprotected contact to animals. The prevalence of S. aureus/MRSA in wildlife as well as its population structures in different wildlife host species warrants further investigation

    The English medieval first-floor hall: part 2 – The evidence from the eleventh to early thirteenth century

    Get PDF
    The concept of the first-floor hall was introduced in 1935, but Blair’s paper of 1993 cast doubt on many of those buildings which had been identified as such. Following the recognition of Scolland’s Hall, Richmond Castle as an example of a hall at first-floor level, the evidence for buildings of this type is reviewed (excluding town houses and halls in the great towers of castles, where other issues apply). While undoubtedly a number of buildings have been mistakenly identified as halls, there is a significant group of structures which there are very strong grounds to classify as first-floor halls. The growth of masonry architecture in elite secular buildings, particularly after the Norman Conquest, allowed halls to be constructed on the first floor. The key features of these are identified and the reasons for constructing the hall at this level – prestige and security – are recognized. The study of these buildings allows two further modifications to the Blair thesis: in some houses, halls and chambers were integrated in a single block at an early date, and the basic idea of the medieval domestic plan was already present by the late eleventh century

    When public action undermines public health: A critical examination of antifluoridationist literature

    Get PDF
    Background: The addition of the chemical fluorine to the water supply, called water fluoridation, reduces dental caries by making teeth more resistant to demineralisation and more likely to remineralise when initially decayed. This process has been implemented in more than 30 countries around the world, is cost-effective and has been shown to be efficacious in preventing decay across a person's lifespan. However, attempts to expand this major public health achievement in line with Australia's National Oral Health Plan 2004–2013 are almost universally met with considerable resistance from opponents of water fluoridation, who engage in coordinated campaigns to portray water fluoridation as ineffective and highly dangerous. Discussion: Water fluoridation opponents employ multiple techniques to try and undermine the scientifically established effectiveness of water fluoridation. The materials they use are often based on Internet resources or published books that present a highly misleading picture of water fluoridation. These materials are used to sway public and political opinion to the detriment of public health. Despite an extensive body of literature, both studies and results within studies are often selectively reported, giving a biased portrayal of water fluoridation effectiveness. Positive findings are downplayed or trivialised and the population implications of these findings misinterpreted. Ecological comparisons are sometimes used to support spurious conclusions. Opponents of water fluoridation frequently repeat that water fluoridation is associated with adverse health effects and studies are selectively picked from the extensive literature to convey only claimed adverse findings related to water fluoridation. Techniques such as "the big lie" and innuendo are used to associate water fluoridation with health and environmental disasters, without factual support. Half-truths are presented, fallacious statements reiterated, and attempts are made to bamboozle the public with a large list of claims and quotes often with little scientific basis. Ultimately, attempts are made to discredit and slander scientists and various health organisations that support water fluoridation. Summary: Water fluoridation is an important public health initiative that has been found to be safe and effective. Nonetheless, the implementation of water fluoridation is still regularly interrupted by a relatively small group of individuals who use misinformation and rhetoric to induce doubts in the minds of the public and government officials. It is important that public health officials are aware of these tactics so that they can better counter their negative effectJason M Armfiel

    Kilo Nalu: Physical / Biogeochemical Dynamics Above and Within Permeable Sediments

    Get PDF
    Special Issue on Coastal Ocean Processes, Observing Technologies and Models, Oceanography, Volume 21, No. 4. December 2008.The article of record as published may be found at https://www.jstor.org/stable/2486002
    • …
    corecore