841 research outputs found

    On Scaling Solutions with a Dissipative Fluid

    Full text link
    We study the asymptotic behaviour of scaling solutions with a dissipative fluid and we show that, contrary to recent claims, the existence of stable accelerating attractor solution which solves the `energy' coincidence problem depends crucially on the chosen equations of state for the thermodynamical variables. We discuss two types of equations of state, one which contradicts this claim, and one which supports it.Comment: 8 pages and 5 figures; to appear in Class. Quantum Gra

    Chaos in Kundt type III Spacetimes

    Full text link
    We consider geodesics motion in a particular Kundt type III spacetime in which Einstein-Yang-Mills equations admit solutions. On a particular surface as constraint we project the geodesics into the (x,y) plane and treat the problem as a 2-dimensional one. Our numerical study shows that chaotic behavior emerges under reasonable conditions.Comment: 4 Figure

    Asymptotic analysis of spatially inhomogeneous stiff and ultra-stiff cosmologies

    Full text link
    We calculate analytically the past asymptotic decay rates close to an initial singularity in general G_0 spatially inhomogeneous perfect fluid models with an effective equation of state which is stiff or ultra-stiff (i.e., γ2\gamma \ge 2). These results are then supported by numerical simulations in a special class of G_2 cosmological models. Our analysis confirms and extends the BKL conjectures and lends support to recent isotropization results in cosmological models of current interest (with γ>2\gamma > 2).Comment: Accepted by CQ

    The Futures of Bianchi type VII0 cosmologies with vorticity

    Full text link
    We use expansion-normalised variables to investigate the Bianchi type VII0_0 model with a tilted γ\gamma-law perfect fluid. We emphasize the late-time asymptotic dynamical behaviour of the models and determine their asymptotic states. Unlike the other Bianchi models of solvable type, the type VII0_0 state space is unbounded. Consequently we show that, for a general non-inflationary perfect fluid, one of the curvature variables diverges at late times, which implies that the type VII0_0 model is not asymptotically self-similar to the future. Regarding the tilt velocity, we show that for fluids with γ<4/3\gamma<4/3 (which includes the important case of dust, γ=1\gamma=1) the tilt velocity tends to zero at late times, while for a radiation fluid, γ=4/3\gamma=4/3, the fluid is tilted and its vorticity is dynamically significant at late times. For fluids stiffer than radiation (γ>4/3\gamma>4/3), the future asymptotic state is an extremely tilted spacetime with vorticity.Comment: 23 pages, v2:references and comments added, typos fixed, to appear in CQ

    Fluid observers and tilting cosmology

    Get PDF
    We study perfect fluid cosmological models with a constant equation of state parameter γ\gamma in which there are two naturally defined time-like congruences, a geometrically defined geodesic congruence and a non-geodesic fluid congruence. We establish an appropriate set of boost formulae relating the physical variables, and consequently the observed quantities, in the two frames. We study expanding spatially homogeneous tilted perfect fluid models, with an emphasis on future evolution with extreme tilt. We show that for ultra-radiative equations of state (i.e., γ>4/3\gamma>4/3), generically the tilt becomes extreme at late times and the fluid observers will reach infinite expansion within a finite proper time and experience a singularity similar to that of the big rip. In addition, we show that for sub-radiative equations of state (i.e., γ<4/3\gamma < 4/3), the tilt can become extreme at late times and give rise to an effective quintessential equation of state. To establish the connection with phantom cosmology and quintessence, we calculate the effective equation of state in the models under consideration and we determine the future asymptotic behaviour of the tilting models in the fluid frame variables using the boost formulae. We also discuss spatially inhomogeneous models and tilting spatially homogeneous models with a cosmological constant

    A geometric description of the intermediate behaviour for spatially homogeneous models

    Full text link
    A new approach is suggested for the study of geometric symmetries in general relativity, leading to an invariant characterization of the evolutionary behaviour for a class of Spatially Homogeneous (SH) vacuum and orthogonal γ\gamma -law perfect fluid models. Exploiting the 1+3 orthonormal frame formalism, we express the kinematical quantities of a generic symmetry using expansion-normalized variables. In this way, a specific symmetry assumption lead to geometric constraints that are combined with the associated integrability conditions, coming from the existence of the symmetry and the induced expansion-normalized form of the Einstein's Field Equations (EFE), to give a close set of compatibility equations. By specializing to the case of a \emph{Kinematic Conformal Symmetry} (KCS), which is regarded as the direct generalization of the concept of self-similarity, we give the complete set of consistency equations for the whole SH dynamical state space. An interesting aspect of the analysis of the consistency equations is that, \emph{at least} for class A models which are Locally Rotationally Symmetric or lying within the invariant subset satisfying Nαα=0N_{\alpha}^{\alpha}=0 , a proper KCS \emph{always exists} and reduces to a self-similarity of the first or second kind at the asymptotic regimes, providing a way for the ``geometrization'' of the intermediate epoch of SH models.Comment: Latex, 15 pages, no figures (uses iopart style/class files); added one reference and minor corrections; (v3) improved and extended discussion; minor corrections and several new references are added; to appear in Class. Quantum Gra

    New cosmological solutions and stability analysis in full extended thermodynamics

    Get PDF
    The Einstein's field equations of FRW universes filled with a dissipative fluid described by full theory of causal transport equations are analyzed. New exact solutions are found using a non-local transformations on the nonlinear differential equation for the Hubble factor. The stability of the de Sitter and asymptotically friedmannian solutions are analyzed using Lyapunov function method.Comment: 13 pages, LaTeX 2.09. To be published in International Journal of Modern Physics

    Anisotropic cosmological models with a perfect fluid and a Λ\Lambda term

    Full text link
    We consider a self-consistent system of Bianchi type-I (BI) gravitational field and a binary mixture of perfect fluid and dark energy given by a cosmological constant. The perfect fluid is chosen to be the one obeying either the usual equation of state, i.e., p = \zeta \ve, with ζ[0,1]\zeta \in [0, 1] or a van der Waals equation of state. Role of the Λ\Lambda term in the evolution of the BI Universe has been studied.Comment: 8 pages, 8 Figure

    Integration of the Friedmann equation for universes of arbitrary complexity

    Full text link
    An explicit and complete set of constants of the motion are constructed algorithmically for Friedmann-Lema\^{i}tre-Robertson-Walker (FLRW) models consisting of an arbitrary number of non-interacting species. The inheritance of constants of the motion from simpler models as more species are added is stressed. It is then argued that all FLRW models admit what amounts to a unique candidate for a gravitational epoch function (a dimensionless scalar invariant derivable from the Riemann tensor without differentiation which is monotone throughout the evolution of the universe). The same relations that lead to the construction of constants of the motion allow an explicit evaluation of this function. In the simplest of all models, the Λ\LambdaCDM model, it is shown that the epoch function exists for all models with Λ>0\Lambda > 0, but for almost no models with Λ0\Lambda \leq 0.Comment: Final form to appear in Physical Review D1

    The late-time behaviour of vortic Bianchi type VIII Universes

    Full text link
    We use the dynamical systems approach to investigate the Bianchi type VIII models with a tilted γ\gamma-law perfect fluid. We introduce expansion-normalised variables and investigate the late-time asymptotic behaviour of the models and determine the late-time asymptotic states. For the Bianchi type VIII models the state space is unbounded and consequently, for all non-inflationary perfect fluids, one of the curvature variables grows without bound. Moreover, we show that for fluids stiffer than dust (1<γ<21<\gamma<2), the fluid will in general tend towards a state of extreme tilt. For dust (γ=1\gamma=1), or for fluids less stiff than dust (0<γ<10<\gamma< 1), we show that the fluid will in the future be asymptotically non-tilted. Furthermore, we show that for all γ1\gamma\geq 1 the universe evolves towards a vacuum state but does so rather slowly, ρ/H21/lnt\rho/H^2\propto 1/\ln t.Comment: 19 pages, 3 ps figures, v2:typos fixed, refs and more discussion adde
    corecore