2,123 research outputs found

    Curvature operators and scalar curvature invariants

    Get PDF
    We continue the study of the question of when a pseudo-Riemannain manifold can be locally characterised by its scalar polynomial curvature invariants (constructed from the Riemann tensor and its covariant derivatives). We make further use of alignment theory and the bivector form of the Weyl operator in higher dimensions, and introduce the important notions of diagonalisability and (complex) analytic metric extension. We show that if there exists an analytic metric extension of an arbitrary dimensional space of any signature to a Riemannian space (of Euclidean signature), then that space is characterised by its scalar curvature invariants. In particular, we discuss the Lorentzian case and the neutral signature case in four dimensions in more detail.Comment: 26 pages, 2 figure

    A spacetime not characterised by its invariants is of aligned type II

    Get PDF
    By using invariant theory we show that a (higher-dimensional) Lorentzian metric that is not characterised by its invariants must be of aligned type II; i.e., there exists a frame such that all the curvature tensors are simultaneously of type II. This implies, using the boost-weight decomposition, that for such a metric there exists a frame such that all positive boost-weight components are zero. Indeed, we show a more general result, namely that any set of tensors which is not characterised by its invariants, must be of aligned type II. This result enables us to prove a number of related results, among them the algebraic VSI conjecture.Comment: 14pages, CQG to appea

    Brane Waves

    Full text link
    In brane-world cosmology gravitational waves can propagate in the higher dimensions (i.e., in the `bulk'). In some appropriate regimes the bulk gravitational waves may be approximated by plane waves. We systematically study five-dimensional gravitational waves that are algebraically special and of type N. In the most physically relevant case the projected non-local stress tensor on the brane is formally equivalent to the energy-momentum tensor of a null fluid. Some exact solutions are studied to illustrate the features of these branes; in particular, we show explicity that any plane wave brane can be embedded into a 5-dimensional Siklos spacetime. More importantly, it is possible that in some appropriate regime the bulk can be approximated by gravitational plane waves and thus may act as initial conditions for the gravitational field in the bulk (thereby enabling the field equations to be integrated on the brane).Comment: 9 pages v3:revised version, to appear in CQ

    Cosmic No Hair for Collapsing Universes

    Full text link
    It is shown that all contracting, spatially homogeneous, orthogonal Bianchi cosmologies that are sourced by an ultra-stiff fluid with an arbitrary and, in general, varying equation of state asymptote to the spatially flat and isotropic universe in the neighbourhood of the big crunch singularity. This result is employed to investigate the asymptotic dynamics of a collapsing Bianchi type IX universe sourced by a scalar field rolling down a steep, negative exponential potential. A toroidally compactified version of M*-theory that leads to such a potential is discussed and it is shown that the isotropic attractor solution for a collapsing Bianchi type IX universe is supersymmetric when interpreted in an eleven-dimensional context.Comment: Extended discussion to include Kantowski-Sachs universe. In press, Classical and Quantum Gravit

    Metrics With Vanishing Quantum Corrections

    Full text link
    We investigate solutions of the classical Einstein or supergravity equations that solve any set of quantum corrected Einstein equations in which the Einstein tensor plus a multiple of the metric is equated to a symmetric conserved tensor TμνT_{\mu \nu} constructed from sums of terms the involving contractions of the metric and powers of arbitrary covariant derivatives of the curvature tensor. A classical solution, such as an Einstein metric, is called {\it universal} if, when evaluated on that Einstein metric, TμνT_{\mu \nu} is a multiple of the metric. A Ricci flat classical solution is called {\it strongly universal} if, when evaluated on that Ricci flat metric, TμνT_{\mu \nu} vanishes. It is well known that pp-waves in four spacetime dimensions are strongly universal. We focus attention on a natural generalisation; Einstein metrics with holonomy Sim(n2){\rm Sim} (n-2) in which all scalar invariants are zero or constant. In four dimensions we demonstrate that the generalised Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is strongly universal; indeed, we show that universality extends to all 4-dimensional Sim(2){\rm Sim}(2) Einstein metrics. We also discuss generalizations to higher dimensions.Comment: 23 page

    Valuing House and Landscape Attributes: Application of the Hedonic Pricing Technique

    Get PDF
    Hedonic pricing is used to determine the effect of a landscape element such as the lawn area on the home selling price of single-family homes in Athens, Georgia. Results show that lawn area and the use of zoysiagrass as the dominant species positively and significantly influenced the selling price.Land Economics/Use,

    Late-time behaviour of the tilted Bianchi type VI1/9_{-1/9} models

    Full text link
    We study tilted perfect fluid cosmological models with a constant equation of state parameter in spatially homogeneous models of Bianchi type VI1/9_{-1/9} using dynamical systems methods and numerical simulations. We study models with and without vorticity, with an emphasis on their future asymptotic evolution. We show that for models with vorticity there exists, in a small region of parameter space, a closed curve acting as the attractor.Comment: 13 pages, 1 figure, v2: typos fixed, minor changes, matches published versio

    Space-times admitting a three-dimensional conformal group

    Get PDF
    Perfect fluid space-times admitting a three-dimensional Lie group of conformal motions containing a two-dimensional Abelian Lie subgroup of isometries are studied. Demanding that the conformal Killing vector be proper (i.e., not homothetic nor Killing), all such space-times are classified according to the structure of their corresponding three-dimensional conformal Lie group and the nature of their corresponding orbits (that are assumed to be non-null). Each metric is then explicitly displayed in coordinates adapted to the symmetry vectors. Attention is then restricted to the diagonal case, and exact perfect fluid solutions are obtained in both the cases in which the fluid four-velocity is tangential or orthogonal to the conformal orbits, as well as in the more general "tilting" case.Comment: Latex 34 page
    corecore