12 research outputs found
Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017
Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-dri
Investigating the role of cyclic AMP signaling in mushroom development in the split gill fungus, Schizophyllum commune
The life cycle of S. commune consists of both haploid and dikaryotic phases. In normal circumstances, only the dikaryotic phase is able to produce fruiting bodies or mushrooms. Previous research in other related fungi suggests that a cAMP signaling pathway is likely to be involved in the sexual development of fruiting bodies in S. commune. The present study examines the role of a member of the cAMP signaling pathway in the sexual development of this fungus. Specifically, we are studying the role of the catalytic subunit of protein kinase A on the formation of mushrooms by performing a gene knockout in S. commune. Currently, we are in the process of constructing the necessary recombinant DNA molecules necessary for use in DNA-mediated transformation experiments. The phenotypic differences between the “knocked out” or null mutant strains generated and the wild type progenitors will be compared in order to gain insight into the role this protein plays in the life cycle of the organism. We have hypothesized that an S. commune null mutant for the gene encoding a catalytic subunit of protein kinase A will likely cause an increase in mushroom production and/or perturbations in the normal development of these reproductive structures
Advances in Genetic Testing for Pancreatic Cancer
Overview Background on genetics Hereditary risk for pancreatic cancer Why do genetic testing? How to schedule a clinical genetics appointment at Jefferso
Recommended from our members
Pretest Genetic Education Video Versus Genetic Counseling for Men Considering Prostate Cancer Germline Testing: A Patient-Choice Study to Address Urgent Practice Needs
PurposeGermline testing (GT) for prostate cancer (PCA) is now central to treatment and hereditary cancer assessment. With rising demand for and shortage of genetic counseling (GC), tools to deliver pretest informed consent across practice settings are needed to improve access to GT and precision care. Here, we report on Evaluation and Management for Prostate Oncology, Wellness, and Risk (EMPOWER), a patient-choice study for pretest video-based genetic education (VBGE) versus GC to inform urgent practice needs.Patients and methodsMen with PCA or at risk for PCA (family history of PCA) were eligible and could choose pretest VBGE or GC. Outcomes included decisional conflict for GT, change in genetics knowledge, satisfaction, and intention to share results with family and/or providers. Descriptive statistics summarized results with counts and percentages for categorical variables and mean ± standard deviation for continuous variables. Data were compared with Fisher's exact, chi-squared, or Wilcoxon two-sample tests. Mean change in genetics knowledge was compared with t tests. The significance level was set a priori at .05.ResultsData on the first 127 participants were analyzed. Characteristics were White (85.8%), bachelor's degree (66.9%), and PCA diagnosis (90.6%). The majority chose VBGE (71%) versus GC (29%; P < .001). No differences were observed in decisional conflict for GT or satisfaction. Cancer genetics knowledge improved in both groups without significant difference (+0.9 VBGE, +1.8 GC, P = .056). Men who chose VBGE had higher intention to share GT results (96.4% VBGE v 86.4% GC, P = .02). Both groups had high rates of GT uptake (VBGE 94.4%, GC 92%).ConclusionA substantial proportion of men opted for pretest VBGE, with comparable patient-reported outcomes and uptake of GT. The results support the use of pretest video to address the critical GC shortage in the precision era
Pretest Genetic Education Video Versus Genetic Counseling for Men Considering Prostate Cancer Germline Testing: A Patient-Choice Study to Address Urgent Practice Needs.
PURPOSE: Germline testing (GT) for prostate cancer (PCA) is now central to treatment and hereditary cancer assessment. With rising demand for and shortage of genetic counseling (GC), tools to deliver pretest informed consent across practice settings are needed to improve access to GT and precision care. Here, we report on Evaluation and Management for Prostate Oncology, Wellness, and Risk (EMPOWER), a patient-choice study for pretest video-based genetic education (VBGE) versus GC to inform urgent practice needs.
PATIENTS AND METHODS: Men with PCA or at risk for PCA (family history of PCA) were eligible and could choose pretest VBGE or GC. Outcomes included decisional conflict for GT, change in genetics knowledge, satisfaction, and intention to share results with family and/or providers. Descriptive statistics summarized results with counts and percentages for categorical variables and mean ± standard deviation for continuous variables. Data were compared with Fisher\u27s exact, chi-squared, or Wilcoxon two-sample tests. Mean change in genetics knowledge was compared with
RESULTS: Data on the first 127 participants were analyzed. Characteristics were White (85.8%), bachelor\u27s degree (66.9%), and PCA diagnosis (90.6%). The majority chose VBGE (71%) versus GC (29%;
CONCLUSION: A substantial proportion of men opted for pretest VBGE, with comparable patient-reported outcomes and uptake of GT. The results support the use of pretest video to address the critical GC shortage in the precision era
Genetic risk assessment for hereditary renal cell carcinoma: Clinical consensus statement
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/170869/1/cncr33679_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/170869/2/cncr33679.pd
Role of genetic testing for inherited prostate cancer risk: Philadelphia prostate cancer consensus conference 2017
© 2017 by American Society of Clinical Oncology. Purpose: Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-driven working framework for comprehensive genetic evaluation of inherited PCA in the multigene testing era addressing genetic counseling, testing, and genetically informed management. Methods: An expert consensus conference was convened including key stakeholders to address genetic counseling and testing, PCA screening, and management informed by evidence review. Results: Consensus was strong that patients should engage in shared decision making for genetic testing. There was strong consensus to test HOXB13 for suspected hereditary PCA, BRCA1/2 for suspected hereditary breast and ovarian cancer, and DNA mismatch repair genes for suspected Lynch syndrome. There was strong consensus to factor BRCA2 mutations into PCA screening discussions. BRCA2 achieved moderate consensus for factoring into early-stage management discussion, with stronger consensus in high-risk/advanced and metastatic setting. Agreement was moderate to test all men with metastatic castration-resistant PCA, regardless of family history, with stronger agreement to test BRCA1/2 and moderate agreement to test ATM to inform prognosis and targeted therapy. Conclusion: To our knowledge, this is the first comprehensive, multidisciplinary consensus statement to address a genetic evaluation framework for inherited PCA in the multigene testing era. Future research should focus on developing a working definition of familial PCA for clinical genetic testing, expanding understanding of genetic contribution to aggressive PCA, exploring clinical use of genetic testing for PCA management, genetic testing of African American males, and addressing the value framework of genetic evaluation and testing men at risk for PCA-a clinically heterogeneous disease
Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019
© 2020 by American Society of Clinical Oncology PURPOSE Germline testing (GT) is a central feature of prostate cancer (PCA) treatment, management, and hereditary cancer assessment. Critical needs include optimized multigene testing strategies that incorporate evolving genetic data, consistency in GT indications and management, and alternate genetic evaluation models that address the rising demand for genetic services. METHODS A multidisciplinary consensus conference that included experts, stakeholders, and national organization leaders was convened in response to current practice challenges and to develop a genetic implementation framework. Evidence review informed questions using the modified Delphi model. The final framework included criteria with strong (. 75%) agreement (Recommend) or moderate (50% to 74%) agreement (Consider). RESULTS Large germline panels and somatic testing were recommended for metastatic PCA. Reflex testing—initial testing of priority genes followed by expanded testing—was suggested for multiple scenarios. Metastatic disease or family history suggestive of hereditary PCA was recommended for GT. Additional family history and pathologic criteria garnered moderate consensus. Priority genes to test for metastatic disease treatment included BRCA2, BRCA1, and mismatch repair genes, with broader testing, such as ATM, for clinical trial eligibility. BRCA2 was recommended for active surveillance discussions. Screening starting at age 40 years or 10 years before the youngest PCA diagnosis in a family was recommended for BRCA2 carriers, with consideration in HOXB13, BRCA1, ATM, and mismatch repair carriers. Collaborative (point-of-care) evaluation models between health care and genetic providers was endorsed to address the genetic counseling shortage. The genetic evaluation framework included optimal pretest informed consent, post-test discussion, cascade testing, and technology-based approaches. CONCLUSION This multidisciplinary, consensus-driven PCA genetic implementation framework provides novel guidance to clinicians and patients tailored to the precision era. Multiple research, education, and policy needs remain of importance
Role of Genetic Testing for Inherited Prostate Cancer Risk: Philadelphia Prostate Cancer Consensus Conference 2017.
Purpose Guidelines are limited for genetic testing for prostate cancer (PCA). The goal of this conference was to develop an expert consensus-driven working framework for comprehensive genetic evaluation of inherited PCA in the multigene testing era addressing genetic counseling, testing, and genetically informed management. Methods An expert consensus conference was convened including key stakeholders to address genetic counseling and testing, PCA screening, and management informed by evidence review. Results Consensus was strong that patients should engage in shared decision making for genetic testing. There was strong consensus to test HOXB13 for suspected hereditary PCA, BRCA1/2 for suspected hereditary breast and ovarian cancer, and DNA mismatch repair genes for suspected Lynch syndrome. There was strong consensus to factor BRCA2 mutations into PCA screening discussions. BRCA2 achieved moderate consensus for factoring into early-stage management discussion, with stronger consensus in high-risk/advanced and metastatic setting. Agreement was moderate to test all men with metastatic castration-resistant PCA, regardless of family history, with stronger agreement to test BRCA1/2 and moderate agreement to test ATM to inform prognosis and targeted therapy. Conclusion To our knowledge, this is the first comprehensive, multidisciplinary consensus statement to address a genetic evaluation framework for inherited PCA in the multigene testing era. Future research should focus on developing a working definition of familial PCA for clinical genetic testing, expanding understanding of genetic contribution to aggressive PCA, exploring clinical use of genetic testing for PCA management, genetic testing of African American males, and addressing the value framework of genetic evaluation and testing men at risk for PCA-a clinically heterogeneous disease
Implementation of Germline Testing for Prostate Cancer: Philadelphia Prostate Cancer Consensus Conference 2019
PURPOSE: Germline testing (GT) is a central feature of prostate cancer (PCA) treatment, management, and hereditary cancer assessment. Critical needs include optimized multigene testing strategies that incorporate evolving genetic data, consistency in GT indications and management, and alternate genetic evaluation models that address the rising demand for genetic services.
METHODS: A multidisciplinary consensus conference that included experts, stakeholders, and national organization leaders was convened in response to current practice challenges and to develop a genetic implementation framework. Evidence review informed questions using the modified Delphi model. The final framework included criteria with strong (\u3e 75%) agreement (Recommend) or moderate (50% to 74%) agreement (Consider).
RESULTS: Large germline panels and somatic testing were recommended for metastatic PCA. Reflex testing-initial testing of priority genes followed by expanded testing-was suggested for multiple scenarios. Metastatic disease or family history suggestive of hereditary PCA was recommended for GT. Additional family history and pathologic criteria garnered moderate consensus. Priority genes to test for metastatic disease treatment included BRCA2, BRCA1, and mismatch repair genes, with broader testing, such as ATM, for clinical trial eligibility. BRCA2 was recommended for active surveillance discussions. Screening starting at age 40 years or 10 years before the youngest PCA diagnosis in a family was recommended for BRCA2 carriers, with consideration in HOXB13, BRCA1, ATM, and mismatch repair carriers. Collaborative (point-of-care) evaluation models between health care and genetic providers was endorsed to address the genetic counseling shortage. The genetic evaluation framework included optimal pretest informed consent, post-test discussion, cascade testing, and technology-based approaches.
CONCLUSION: This multidisciplinary, consensus-driven PCA genetic implementation framework provides novel guidance to clinicians and patients tailored to the precision era. Multiple research, education, and policy needs remain of importance