29,180 research outputs found
Transport anomalies in a simplified model for a heavy electron quantum critical point
We discuss the transport anomalies associated with the development of heavy
electrons out of a neutral spin fluid using the large-N treatment of the
Kondo-Heisenberg lattice model. At the phase transition in this model the spin
excitations suddenly acquire charge. The Higgs process by which this takes
place causes the constraint gauge field to loosely ``lock'' together with the
external, electromagnetic gauge field. From this perspective, the heavy fermion
phase is a Meissner phase in which the field representing the difference
between the electromagnetic and constraint gauge field, is excluded from the
material. We show that at the transition into the heavy fermion phase, both the
linear and the Hall conductivity jump together. However, the Drude weight of
the heavy electron fluid does not jump at the quantum critical point, but
instead grows linearly with the distance from the quantum critical point,
forming a kind of ``gossamer'' Fermi-liquid.Comment: 15 pages, 3 figures. Small change in references in v
Correlative studies of the solar wind. The interplanetary magnetic field, and their effects on the geomagnetic cavity using Explorer 33 and 35 data
The work completed in the study of the effects of the solar wind and interplanetary magnetic field on the bow shock and geomagnetic cavity is reported along with work underway but not yet completed. The correlative data from Explorer 33 and 35, and the computer programs for processing the data are described. The research discussed includes: polar cusps, substorms, geomagnetic activity, and North-South component of the interplanetary magnetic field. Lists of publications, and papers presented at meetings are included
Hidden Order in
We review current attempts to characterize the underlying nature of the
hidden order in . A wide variety of experiments point to the
existence of two order parameters: a large primary order parameter of unknown
character which co-exists with secondary antiferromagnetic order. Current
theories can be divided into two groups determined by whether or not the
primary order parameter breaks time-reversal symmetry. We propose a series of
experiments designed to test the time-reversal nature of the underlying primary
order in and to characterize its local single-ion physics
Atomic Model of Susy Hubbard Operators
We apply the recently proposed susy Hubbard operators to an atomic model. In
the limiting case of free spins, we derive exact results for the entropy which
are compared with a mean field + gaussian corrections description. We show how
these results can be extended to the case of charge fluctuations and calculate
exact results for the partition function, free energy and heat capacity of an
atomic model for some simple examples. Wavefunctions of possible states are
listed. We compare the accuracy of large N expansions of the susy spin
operators with those obtained using `Schwinger bosons' and `Abrikosov
pseudo-fermions'. For the atomic model, we compare results of slave boson,
slave fermion, and susy Hubbard operator approximations in the physically
interesting but uncontrolled limiting case of N->2. For a mixed representation
of spins we estimate the accuracy of large N expansions of the atomic model. In
the single box limit, we find that the lowest energy saddle-point solution
reduces to simply either slave bosons or slave fermions, while for higher boxes
this is not the case. The highest energy saddle-point solution has the
interesting feature that it admits a small region of a mixed representation,
which bears a superficial resemblance to that seen experimentally close to an
antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision
Phenomenological Transport Equation for the Cuprate Metals
We observe that the appearance of two transport relaxation times in the
various transport coefficients of cuprate metals may be understood in terms of
scattering processes that discriminate between currents that are even, or odd
under the charge conjugation operator. We develop a transport equation that
illustrates these ideas and discuss its experimental and theoretical
consequences.Comment: Replaced with journal ref. Latex+ p
Local Moments in an Interacting Environment
We discuss how local moment physics is modified by the presence of
interactions in the conduction sea. Interactions in the conduction sea are
shown to open up new symmetry channels for the exchange of spin with the
localized moment. We illustrate this conclusion in the strong-coupling limit by
carrying out a Schrieffer Wolff transformation for a local moment in an
interacting electron sea, and show that these corrections become very severe in
the approach to a Mott transition. As an example, we show how the Zhang Rice
reduction of a two-band model is modified by these new effects.Comment: Latex file with two postscript figures. Revised version, with more
fully detailed calculation
Non Equilibrium Noise as a Probe of the Kondo Effect in Mesoscopic Wires
We study the non-equilibrium noise in mesoscopic diffusive wires hosting
magnetic impurities. We find that the shot-noise to current ratio develops a
peak at intermediate source-drain biases of the order of the Kondo temperature.
The enhanced impurity contribution at intermediate biases is also manifested in
the effective distribution. The predicted peak represents increased inelastic
scattering rate at the non-equilibrium Kondo crossover.Comment: 4+ pages, 4 figures, published versio
- …