685 research outputs found

    The spatial distribution of cavitation induced acoustic emission, sonoluminescence and cell lysis in the field of a shock wave lithotripter

    No full text
    This study examines the spatial distribution of various properties attributed to the cavitation field generated by a shock wave lithotripter. These properties include acoustic emission and sonoluminescence, which result from violent bubble collapse, and the degree of cell lysis in vitro, which appears to be related to cavitation. The acoustic emission detected with a 1 MHz, 12 cm diameter focused hydrophone occurs in two distinct bursts. The immediate signal is emitted from a small region contained within the 4 MPa peak negative pressure contour. A second, delayed, burst is emitted from a region extending further along the beam axis. The delay between these two bursts has also been mapped, and the longest delay occurs at positions close to the regions of maximum peak negative pressure. Sonoluminescence from both single and multiple shocks occurs in a broader region than the acoustic emission but the measurement technique does not allow time resolution of the signal. Cell lysis occurs in a relatively small region that correlates closely with the immediate acoustic emission for a shock propagating in a gelatine solution

    Thermodynamics of non-local materials: extra fluxes and internal powers

    Full text link
    The most usual formulation of the Laws of Thermodynamics turns out to be suitable for local or simple materials, while for non-local systems there are two different ways: either modify this usual formulation by introducing suitable extra fluxes or express the Laws of Thermodynamics in terms of internal powers directly, as we propose in this paper. The first choice is subject to the criticism that the vector fluxes must be introduced a posteriori in order to obtain the compatibility with the Laws of Thermodynamics. On the contrary, the formulation in terms of internal powers is more general, because it is a priori defined on the basis of the constitutive equations. Besides it allows to highlight, without ambiguity, the contribution of the internal powers in the variation of the thermodynamic potentials. Finally, in this paper, we consider some examples of non-local materials and derive the proper expressions of their internal powers from the power balance laws.Comment: 16 pages, in press on Continuum Mechanics and Thermodynamic

    The Massive Multi-flavor Schwinger Model

    Get PDF
    QED with N species of massive fermions on a circle of circumference L is analyzed by bosonization. The problem is reduced to the quantum mechanics of the 2N fermionic and one gauge field zero modes on the circle, with nontrivial interactions induced by the chiral anomaly and fermions masses. The solution is given for N=2 and fermion masses (m) much smaller than the mass of the U(1) boson with mass \mu=\sqrt{2e^2/\pi} when all fermions satisfy the same boundary conditions. We show that the two limits m \go 0 and L \go \infty fail to commute and that the behavior of the theory critically depends on the value of mL|\cos\onehalf\theta| where \theta is the vacuum angle parameter. When the volume is large \mu L \gg 1, the fermion condensate is -(e^{4\gamma} m\mu^2 \cos^4\onehalf\theta/4\pi^3)^{1/3} or $-2e^\gamma m\mu L \cos^2 \onehalf\theta /\pi^2 for mL(\mu L)^{1/2} |\cos\onehalf\theta| \gg 1 or \ll 1, respectively. Its correlation function decays algebraically with a critical exponent \eta=1 when m\cos\onehalf\theta=0.Comment: 16 pages, latex, uses epsf.sty; replaced with latex src

    Induced Universal Properties and Deconfinement

    Full text link
    We propose a general strategy to determine universal properties induced by a nearby phase transition on a non-order parameter field. A general renormalizable Lagrangian is used, which contains the order parameter and a non-order parameter field, and respects all the symmetries present. We investigate the case in which the order parameter field depends only on space coordinates and the case in which this field is also time dependent. We find that the spatial correlators of the non-order parameter field, in both cases, are infrared dominated and can be used to determine properties of the phase transition. We predict a universal behavior for the screening mass of a generic singlet field, and show how to extract relevant information from such a quantity. We also demonstrate that the pole mass of the non-order parameter field is not infrared sensitive. Our results can be applied to any continuous phase transition. As an example we consider the deconfining transition in pure Yang-Mills theory, and show that our findings are supported by lattice data. Our analysis suggests that monitoring the spatial correlators of different hadron species, more specifically the derivatives of these, provides an efficient and sufficient way to experimentally uncover the deconfining phase transition and its features.Comment: Added computational details and improved the text. The results are unchange

    Observers in an accelerated universe

    Get PDF
    If the current acceleration of our Universe is due to a cosmological constant, then a Coleman-De Luccia bubble will nucleate in our Universe. In this work, we consider that our observations could be likely in this framework, consisting in two infinite spaces, if a foliation by constant mean curvature hypersurfaces is taken to count the events in the spacetime. Thus, we obtain and study a particular foliation, which covers the existence of most observers in our part of spacetime.Comment: revised version, accepted in EPJ

    QED and String Theory

    Full text link
    We analyze the D9-D9bar system in type IIB string theory using Dp-brane probes. It is shown that the world-volume theory of the probe Dp-brane contains two-dimensional and four-dimensional QED in the cases with p=1 and p=3, respectively, and some applications of the realization of these well-studied quantum field theories are discussed. In particular, the two-dimensional QED (the Schwinger model) is known to be a solvable theory and we can apply the powerful field theoretical techniques, such as bosonization, to study the D-brane dynamics. The tachyon field created by the D9-D9bar strings appears as the fermion mass term in the Schwinger model and the tachyon condensation is analyzed by using the bosonized description. In the T-dualized picture, we obtain the potential between a D0-brane and a D8-D8bar pair using the Schwinger model and we observe that it consists of the energy carried by fundamental strings created by the Hanany-Witten effect and the vacuum energy due to a cylinder diagram. The D0-brane is treated quantum mechanically as a particle trapped in the potential, which turns out to be a system of a harmonic oscillator. As another application, we obtain a matrix theory description of QED using Taylor's T-duality prescription, which is actually applicable to a wide variety of field theories including the realistic QCD. We show that the lattice gauge theory is naturally obtained by regularizing the matrix size to be finite.Comment: 33 pages, Latex, 4 figures, a reference adde

    Reconstruction of field theory from excitation spectra of defects

    Full text link
    We show how to reconstruct a field theory from the spectrum of bound states on a topological defect. We apply our recipe to the case of kinks in 1+1 dimensions with one or two bound states. Our recipe successfully yields the sine-Gordon and λϕ4\lambda \phi^4 field theories when suitable bound state spectra are assumed. The recipe can also be used to globally reconstruct the inflaton potential of inflationary cosmology if the inflaton produces a topological defect. We discuss how defects can provide ``smoking gun'' evidence for a class of inflationary models.Comment: 10 pages, 4 figures. Included proof (Appendix B) that wall fluctuation potentials have supersymmetric form. Added reference

    Staggered versus overlap fermions: a study in the Schwinger model with Nf=0,1,2N_f=0,1,2

    Full text link
    We study the scalar condensate and the topological susceptibility for a continuous range of quark masses in the Schwinger model with Nf=0,1,2N_f=0,1,2 dynamical flavors, using both the overlap and the staggered discretization. At finite lattice spacing the differences between the two formulations become rather dramatic near the chiral limit, but they get severely reduced, at the coupling considered, after a few smearing steps.Comment: 15 pages, 7 figures, v2: 1 ref corrected, minor change

    Semileptonic form factors - a model-independent approach

    Get PDF
    We demonstrate that the B->D(*) l nu form factors can be accurately predicted given the slope parameter rho^2 of the Isgur-Wise function. Only weak assumptions, consistent with lattice results, on the wavefunction for the light degrees of freedom are required to establish this result. We observe that the QCD and 1/m_Q corrections can be systematically represented by an effective Isgur-Wise function of shifted slope. This greatly simplifies the analysis of semileptonic B decay. We also investigate what the available semileptonic data can tell us about lattice QCD and Heavy Quark Effective Theory. A rigorous identity relating the form factor slope difference rho_D^2-rho_A1^2 to a combination of form factor intercepts is found. The identity provides a means of checking theoretically evaluated intercepts with experiment.Comment: 18 pages, Revtex, 4 postscript figures, uses epsfig.st
    • …
    corecore