15,703 research outputs found

    Inversion of polarimetric data from eclipsing binaries

    Get PDF
    We describe a method for determining the limb polarization and limb darkening of stars in eclipsing binary systems, by inverting photometric and polarimetric light curves. Because of the ill-conditioning of the problem, we use the Backus-Gilbert method to control the resolution and stability of the recovered solution, and to make quantitative estimates of the maximum accuracy possible. Using this method we confirm that the limb polarization can indeed be recovered, and demonstrate this with simulated data, thus determining the level of observational accuracy required to achieve a given accuracy of reconstruction. This allows us to set out an optimal observational strategy, and to critcally assess the claimed detection of limb polarization in the Algol system. The use of polarization in stars has been proposed as a diagnostic tool in microlensing surveys by Simmons et al. (1995), and we discuss the extension of this work to the case of microlensing of extended sources.Comment: 10pp, 5 figures. To appear in A&

    Fermionization, Convergent Perturbation Theory, and Correlations in the Yang-Mills Quantum Field Theory in Four Dimensions

    Full text link
    We show that the Yang-Mills quantum field theory with momentum and spacetime cutoffs in four Euclidean dimensions is equivalent, term by term in an appropriately resummed perturbation theory, to a Fermionic theory with nonlocal interaction terms. When a further momentum cutoff is imposed, this Fermionic theory has a convergent perturbation expansion. To zeroth order in this perturbation expansion, the correlation function E(x,y)E(x,y) of generic components of pairs of connections is given by an explicit, finite-dimensional integral formula, which we conjecture will behave as E(x,y)xy22dG,E(x,y) \sim |x - y|^{-2 - 2 d_G}, \noindent for xy>>0,|x-y|>>0, where dGd_G is a positive integer depending on the gauge group G.G. In the case where G=SU(n),G=SU(n), we conjecture that dG=dimSU(n)dimS(U(n1)×U(1)),d_G = {\rm dim}SU(n) - {\rm dim}S(U(n-1) \times U(1)), \noindent so that the rate of decay of correlations increases as n.n \to \infty.Comment: Minor corrections of notation, style and arithmetic errors; correction of minor gap in the proof of Proposition 1.4 (the statement of the Proposition was correct); further remark and references adde

    Microlensing of Extended Stellar Sources

    Get PDF
    We investigate the feasibility of reconstructing the radial intensity profile of extended stellar sources by inverting their microlensed light curves. Using a simple, linear, limb darkening law as an illustration, we show that the intensity profile can be accurately determined, at least over the outer part of the stellar disc, with realistic light curve sampling and photometric errors. The principal requirement is that the impact parameter of the lens be less than or equal to the stellar radius. Thus, the analysis of microlensing events provides a powerful method for testing stellar atmosphere models.Comment: 4 pages LaTeX, to appear in New Astronomy Reviews - proceedings of the Oxford Workshop `Gravitational Lensing: Nature's Own Weighing Scales'. Uses elsart.cls. Paper also available at ftp://info.astro.gla.ac.uk/pub/martin/extended.p

    Flat-top oscillons in an expanding universe

    Full text link
    Oscillons are extremely long lived, oscillatory, spatially localized field configurations that arise from generic initial conditions in a large number of non-linear field theories. With an eye towards their cosmological implications, we investigate their properties in an expanding universe. We (1) provide an analytic solution for one dimensional oscillons (for the models under consideration) and discuss their generalization to 3 dimensions, (2) discuss their stability against long wavelength perturbations and (3) estimate the effects of expansion on their shapes and life-times. In particular, we discuss a new, extended class of oscillons with surprisingly flat tops. We show that these flat topped oscillons are more robust against collapse instabilities in (3+1) dimensions than their usual counterparts. Unlike the solutions found in the small amplitude analysis, the width of these configurations is a non-monotonic function of their amplitudes.Comment: v2-matches version published in Phys. Rev D. Updated references and minor modification to section 4.

    Vacuum Decay in Theories with Symmetry Breaking by Radiative Corrections

    Full text link
    The standard bounce formalism for calculating the decay rate of a metastable vacuum cannot be applied to theories in which the symmetry breaking is due to radiative corrections, because in such theories the tree-level action has no bounce solutions. In this paper I derive a modified formalism to deal with such cases. As in the usual case, the bubble nucleation rate may be written in the form AeBA e^{-B}. To leading approximation, BB is the bounce action obtained by replacing the tree-level potential by the leading one-loop approximation to the effective potential, in agreement with the generally adopted {\it ad hoc} remedy. The next correction to BB (which is proportional to an inverse power of a small coupling) is given in terms of the next-to-leading term in the effective potential and the leading correction to the two-derivative term in the effective action. The corrections beyond these (which may be included in the prefactor) do not have simple expressions in terms of the effective potential and the other functions in the effective action. In particular, the scalar-loop terms which give an imaginary part to the effective potential do not explicitly appear; the corresponding effects are included in a functional determinant which gives a manifestly real result for the nucleation rate.Comment: 39 pages, CU-TP-57

    Entanglement Measure for Composite Systems

    Full text link
    A general description of entanglement is suggested as an action realized by an arbitrary operator over given disentangled states. The related entanglement measure is defined. Because of its generality, this definition can be employed for any physical systems, pure or mixed, equilibrium or nonequilibrium, and characterized by any type of operators, whether these are statistical operators, field operators, spin operators, or anything else. Entanglement of any number of parts from their total ensemble forming a multiparticle composite system can be determined. Interplay between entanglement and ordering, occurring under phase transitions, is analysed by invoking the concept of operator order indices.Comment: 6 pages, Revte

    Benchmarking the Variational Reduced Density Matrix Theory in the Doubly Occupied Configuration Interaction Space with Integrable Pairing Models

    Get PDF
    The variational reduced density matrix theory has been recently applied with great success to models within the truncated doubly occupied configuration interaction space, which corresponds to the seniority zero subspace. Conservation of the seniority quantum number restricts the Hamiltonians to be based on the SU(2) algebra. Among them there is a whole family of exactly solvable Richardson-Gaudin pairing Hamiltonians. We benchmark the variational theory against two different exactly solvable models, the Richardson-Gaudin-Kitaev and the reduced BCS Hamiltonians. We obtain exact numerical results for the so-called PQGT N-representability conditions in both cases for systems that go from 10 to 100 particles. However, when random single-particle energies as appropriate for small superconducting grains are considered, the exactness is lost but still a high accuracy is obtained.Fil: Rubio García, A.. Instituto de Estructura de la Materia; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Capuzzi, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Dukelsky, J.. Consejo Superior de Investigaciones Científicas; España. Instituto de Estructura de la Materia; Españ

    Fractional-Spin Integrals of Motion for the Boundary Sine-Gordon Model at the Free Fermion Point

    Get PDF
    We construct integrals of motion (IM) for the sine-Gordon model with boundary at the free Fermion point which correctly determine the boundary S matrix. The algebra of these IM (``boundary quantum group'' at q=1) is a one-parameter family of infinite-dimensional subalgebras of twisted affine sl(2). We also propose the structure of the fractional-spin IM away from the free Fermion point.Comment: 19 pages, LaTeX, no figure

    Fate of the false monopoles: induced vacuum decay

    Full text link
    We study a gauge theory model where there is an intermediate symmetry breaking to a meta- stable vacuum that breaks a simple gauge group to a U (1) factor. Such models admit the existence of meta-stable magnetic monopoles, which we dub false monopoles. We prove the existence of these monopoles in the thin wall approximation. We determine the instantons for the collective coordinate that corresponds to the radius of the monopole wall and we calculate the semi-classical tunneling rate for the decay of these monopoles. The monopole decay consequently triggers the decay of the false vacuum. As the monopole mass is increased, we find an enhanced rate of decay of the false vacuum relative to the celebrated homogeneous tunneling rate due to Coleman [1].Comment: 10 pages, 4 figure
    corecore