23,649 research outputs found

    Dilution jet mixing program, phase 3

    Get PDF
    The main objectives for the NASA Jet Mixing Phase 3 program were: extension of the data base on the mixing of single sided rows of jets in a confined cross flow to discrete slots, including streamlined, bluff, and angled injections; quantification of the effects of geometrical and flow parameters on penetration and mixing of multiple rows of jets into a confined flow; investigation of in-line, staggered, and dissimilar hole configurations; and development of empirical correlations for predicting temperature distributions for discrete slots and multiple rows of dilution holes

    Reentrant violation of special relativity in the low-energy corner

    Get PDF
    In the effective relativistic quantum field theories the energy region, where the special relativity holds, can be sandwiched from both the high and low energies sides by domains where the special relativity is violated. An example is provided by 3He-A where the relativistic quantum field theory emerges as the effective theory. The reentrant violation of the special relativity in the ultralow energy corner is accompanied by the redistribution of the momentum-space topological charges between the fermionic flavors. At this ultralow energy an exotic massless fermion with the topological charge N3=2N_3=2 arises, whose energy spectrum mixes the classical and relativistic behavior. This effect can lead to neutrino oscillations if neutrino flavors are still massless at this energy scale.Comment: RevTeX file, 5 pages, one figure, submitted to JETP Let

    Regularized Green's Function for the Inverse Square Potential

    Full text link
    A Green's function approach is presented for the D-dimensional inverse square potential in quantum mechanics. This approach is implemented by the introduction of hyperspherical coordinates and the use of a real-space regulator in the regularized version of the model. The application of Sturm-Liouville theory yields a closed expression for the radial energy Green's function. Finally, the equivalence with a recent path-integral treatment of the same problem is explicitly shown.Comment: 10 pages. The final section was expande

    Jet Modification in a Brick of QGP Matter

    Full text link
    We have implemented the LPM effect into a microscopic transport model with partonic degrees of freedom by following the algorithm of Zapp & Wiedemann. The Landau-Pomeranchuk-Migdal (LPM) effect is a quantum interference process that modifies the emission of radiation in the presence of a dense medium. In QCD this results in a quadratic length dependence for radiative energy loss. This is an important effect for the modification of jets by their passage through the QGP. We verify the leading parton energy loss in the model against the leading order Baier-Dokshitzer-Mueller-Peigne-Schiff-Zakharov (BDMPS-Z) result. We apply our model to the recent observations of the modification of di-jets at the LHC.Comment: Presented at Panic 1

    What can we learn from Dijet suppression at RHIC?

    Full text link
    We present a systematic study of the dijet suppression at RHIC using the VNI/BMS parton cascade. We examine the modification of the dijet asymmetry A_j and the within-cone transverse energy distribution (jet-shape) along with partonic fragmentation distributions z and j_t in terms of: qhat; the path length of leading and sub-leading jets; cuts on the jet energy distributions; jet cone angle and the jet-medium interaction mechanism. We find that A_j is most sensitive to qhat and relatively insensitive to the nature of the jet-medium interaction mechanism. The jet profile is dominated by qhat and the nature of the interaction mechanism. The partonic fragmentation distributions clearly show the jet modification and differentiate between elastic and radiative+elastic modes

    Nucleation at the DNA supercoiling transition

    Full text link
    Twisting DNA under a constant applied force reveals a thermally activated transition into a state with a supercoiled structure known as a plectoneme. Using transition state theory, we predict the rate of this plectoneme nucleation to be of order 10^4 Hz. We reconcile this with experiments that have measured hopping rates of order 10 Hz by noting that the viscosity of the bead used to manipulate the DNA limits the measured rate. We find that the intrinsic bending caused by disorder in the base-pair sequence is important for understanding the free energy barrier that governs the transition. Both analytic and numerical methods are used in the calculations. We provide extensive details on the numerical methods for simulating the elastic rod model with and without disorder.Comment: 18 pages, 15 figure
    • …
    corecore