29,736 research outputs found

    Prediction of stable walking for a toy that cannot stand

    Get PDF
    Previous experiments [M. J. Coleman and A. Ruina, Phys. Rev. Lett. 80, 3658 (1998)] showed that a gravity-powered toy with no control and which has no statically stable near-standing configurations can walk stably. We show here that a simple rigid-body statically-unstable mathematical model based loosely on the physical toy can predict stable limit-cycle walking motions. These calculations add to the repertoire of rigid-body mechanism behaviors as well as further implicating passive-dynamics as a possible contributor to stability of animal motions.Comment: Note: only corrections so far have been fixing typo's in these comments. 3 pages, 2 eps figures, uses epsf.tex, revtex.sty, amsfonts.sty, aps.sty, aps10.sty, prabib.sty; Accepted for publication in Phys. Rev. E. 4/9/2001 ; information about Andy Ruina's lab (including Coleman's, Garcia's and Ruina's other publications and associated video clips) can be found at: http://www.tam.cornell.edu/~ruina/hplab/index.html and more about Georg Bock's Simulation Group with whom Katja Mombaur is affiliated can be found at http://www.iwr.uni-heidelberg.de/~agboc

    Two-fluid behavior of the Kondo lattice in the 1/N slave boson approach

    Full text link
    It has been recently shown by Nakatsuji, Pines, and Fisk [S. Nakatsuji, D. Pines, and Z. Fisk, Phys. Rev. Lett. 92, 016401 (2004)] from the phenomenological analysis of experiments in Ce1-xLaxCoIn5 and CeIrIn5 that thermodynamic and transport properties of Kondo lattices below coherence temperature can be very successfully described in terms of a two-fluid model, with Kondo impurity and heavy electron Fermi liquid contributions. We analyze thermodynamic properties of Kondo lattices using 1/N slave boson treatment of the periodic Anderson model and show that these two contributions indeed arise below the coherence temperature. We find that the Kondo impurity contribution to thermodynamics corresponds to thermal excitations into the flat portion of the energy spectrum.Comment: 7 pages, 2 figure

    Defects in Heavy-Fermion Materials: Unveiling Strong Correlations in Real Space

    Full text link
    Complexity in materials often arises from competing interactions at the atomic length scale. One such example are the strongly correlated heavy-fermion materials where the competition between Kondo screening and antiferromagnetic ordering is believed to be the origin of their puzzling non-Fermi-liquid properties. Insight into such complex physical behavior in strongly correlated electron systems can be gained by impurity doping. Here, we develop a microscopic theoretical framework to demonstrate that defects implanted in heavy-fermion materials provide an opportunity for unveiling competing interactions and their correlations in real space. Defect-induced perturbations in the electronic and magnetic correlations possess characteristically different spatial patterns that can be visualized via their spectroscopic signatures in the local density of states or non-local spin susceptibility. These real space patterns provide insight into the complex electronic structure of heavy-fermion materials, the light or heavy character of the perturbed states, and the hybridization between them. The strongly correlated nature of these materials also manifests itself in highly non-linear quantum interference effects between defects that can drive the system through a first-order phase transition to a novel inhomogeneous ground state.Comment: 11 pages, 7 figure

    General Solutions for Tunneling of Scalar Fields with Quartic Potentials

    Full text link
    For the theory of a single scalar field φ\varphi with a quartic potential V(φ)V(\varphi), we find semi-analytic expressions for the Euclidean action in both four and three dimensions. The action in four dimensions determines the quantum tunneling rate at zero temperature from a false vacuum state to the true vacuum state; similarly, the action in three dimensions determines the thermal tunneling rate for a finite temperature theory. We show that for all quartic potentials, the action can be obtained from a one parameter family of instanton solutions corresponding to a one parameter family of differential equations. We find the solutions numerically and use polynomial fitting formulae to obtain expressions for the Euclidean action. These results allow one to calculate tunneling rates for the entire possible range of quartic potentials, from the thin-wall (nearly degenerate) limit to the opposite limit of vanishing barrier height. We also present a similar calculation for potentials containing φ4lnâĄÏ†2\varphi^4 \ln \varphi^2 terms, which arise in the one-loop approximation to the effective potential in electroweak theory.Comment: 17 pages, 6 figures not included but available upon request, UM AC 93-

    Quantum Fermion Hair

    Full text link
    It is shown that the Dirac operator in the background of a magnetic %Reissner-Nordstr\"om black hole and a Euclidean vortex possesses normalizable zero modes in theories containing superconducting cosmic strings. One consequence of these zero modes is the presence of a fermion condensate around magnetically charged black holes which violates global quantum numbers.Comment: 16pp (harvmac (l)) and 2 figs.(not included

    Vacuum decay and internal symmetries

    Get PDF
    We study the effects of internal symmetries on the decay by bubble nucleation of a metastable false vacuum. The zero modes about the bounce solution that are associated with the breaking of continuous internal symmetries result in an enhancement of the tunneling rate into vacua in which some of the symmetries of the initial state are spontaneously broken. We develop a general formalism for evaluating the effects of these zero modes on the bubble nucleation rate in both flat and curved space-times.Comment: LaTex, 11 pages, No figures, one minor chang

    Hidden Order Transition in URu2Si2 and the Emergence of a Coherent Kondo Lattice

    Full text link
    Using a large-N approach, we demonstrate that the differential conductance and quasi-particle interference pattern measured in recent scanning tunneling spectroscopy experiments (A.R. Schmidt et al. Nature 465, 570 (2010); P. Aynajian et al., PNAS 107, 10383 (2010)) in URu2Si2 are consistent with the emergence of a coherent Kondo lattice below its hidden order transition (HOT). Its formation is driven by a significant increase in the quasi-particle lifetime, which could arise from the emergence of a yet unknown order parameter at the HOT.Comment: 5 pages, 3 figure

    Discussion quality diffuses in the digital public square

    Full text link
    Studies of online social influence have demonstrated that friends have important effects on many types of behavior in a wide variety of settings. However, we know much less about how influence works among relative strangers in digital public squares, despite important conversations happening in such spaces. We present the results of a study on large public Facebook pages where we randomly used two different methods--most recent and social feedback--to order comments on posts. We find that the social feedback condition results in higher quality viewed comments and response comments. After measuring the average quality of comments written by users before the study, we find that social feedback has a positive effect on response quality for both low and high quality commenters. We draw on a theoretical framework of social norms to explain this empirical result. In order to examine the influence mechanism further, we measure the similarity between comments viewed and written during the study, finding that similarity increases for the highest quality contributors under the social feedback condition. This suggests that, in addition to norms, some individuals may respond with increased relevance to high-quality comments.Comment: 10 pages, 6 figures, 2 table

    Double Well Potential: Perturbation Theory, Tunneling, WKB (beyond instantons)

    Full text link
    A simple approximate solution for the quantum-mechanical quartic oscillator V=m2x2+gx4V= m^2 x^2+g x^4 in the double-well regime m2<0m^2<0 at arbitrary g≄0g \geq 0 is presented. It is based on a combining of perturbation theory near true minima of the potential, semi-classical approximation at large distances and a description of tunneling under the barrier. It provides 9-10 significant digits in energies and gives for wavefunctions the relative deviation in real xx-space less than â‰Č10−3\lesssim 10^{-3}.Comment: 13 pages, invited talk at "Crossing the boundaries: Gauge dynamics at strong coupling (Shifmania)", Minneapolis, May 14-17, 200

    Atomic Model of Susy Hubbard Operators

    Full text link
    We apply the recently proposed susy Hubbard operators to an atomic model. In the limiting case of free spins, we derive exact results for the entropy which are compared with a mean field + gaussian corrections description. We show how these results can be extended to the case of charge fluctuations and calculate exact results for the partition function, free energy and heat capacity of an atomic model for some simple examples. Wavefunctions of possible states are listed. We compare the accuracy of large N expansions of the susy spin operators with those obtained using `Schwinger bosons' and `Abrikosov pseudo-fermions'. For the atomic model, we compare results of slave boson, slave fermion, and susy Hubbard operator approximations in the physically interesting but uncontrolled limiting case of N->2. For a mixed representation of spins we estimate the accuracy of large N expansions of the atomic model. In the single box limit, we find that the lowest energy saddle-point solution reduces to simply either slave bosons or slave fermions, while for higher boxes this is not the case. The highest energy saddle-point solution has the interesting feature that it admits a small region of a mixed representation, which bears a superficial resemblance to that seen experimentally close to an antiferromagnetic quantum critical point.Comment: 17 pages + 7 pages Appendices, 14 figures. Substantial revision
    • 

    corecore