1,408 research outputs found

    The effect of a small vegetation dieback event on salt marsh sediment transport

    Get PDF
    Vegetation is a critical component of the ecogeomorphic feedbacks that allow a salt marsh to build soil and accrete vertically. Vegetation dieback can therefore have detrimental effects on marsh stability, especially under conditions of rising sea levels. Here, we report a variety of sediment transport measurements associated with an unexpected, natural dieback in a rapidly prograding marsh in the Altamaha River Estuary, Georgia. We find that vegetation mortality led to a significant loss in elevation at the dieback site as evidenced by measurements of vertical accretion, erosion, and surface topography compared to vegetated refer- ence areas. Below-ground vegetation mortality led to reduced soil shear strength. The dieback site displayed an erosional, concave-up topographic profile, in contrast to the reference sites. At the location directly impacted by the dieback, there was a reduction in flood dominance of suspended sediment concentration. Our work illustrates how a vegetation disturbance can at least temporarily reverse the local trajectory of a prograding marsh and produce complex patterns of sediment transport

    Reconciling models and measurements of marsh vulnerability to sealevel rise

    Get PDF
    Tidal marsh survival in the face of sea level rise (SLR) anddeclining sediment supply often depends on the ability ofmarshes to build soil vertically. However, numerical models typically predict survival under rates of SLR that farexceedfield-based measurements of vertical accretion. Here, we combine novel measurements from sevenU.S. Atlantic Coast marshes and data from 70 additional marshes from around the world to illustrate that—over con-tinental scales—70% of variability in marsh accretion rates can be explained by suspended sediment concentratin(SSC) and spring tidal range (TR). Apparent discrepancies between models and measurements can be explained bydiffering responses in high marshes and low marshes,the latter of which accretes faster for a given SSC andTR. Together these results help bridge the gap between models and measurements, and reinforce the paradigm thatsediment supply is the key determinant of wetland vulnerability at continental scales

    Scale invariance and viscosity of a two-dimensional Fermi gas

    Full text link
    We investigate the collective excitations of a harmonically trapped two-dimensional Fermi gas from the collisionless (zero sound) to the hydrodynamic (first sound) regime. The breathing mode, which is sensitive to the equation of state, is observed at a frequency two times the dipole mode frequency for a large range of interaction strengths and temperatures, and the amplitude of the breathing mode is undamped. This provides evidence for a dynamical SO(2,1) scaling symmetry of the two-dimensional Fermi gas. Moreover, we investigate the quadrupole mode to measure the shear viscosity of the two-dimensional gas and study its temperature dependence

    Onset of runaway fragmentation of salt marshes

    Get PDF
    Salt marshes are valuable but vulnerable coastal ecosystems that adapt to relative sea level rise (RSLR) by accumulating organic matter and inorganic sediment. The natural limit of these processes defines a threshold rate of RSLR beyond which marshes drown, resulting in ponding and conversion to open waters. We develop a simplified formulation for sediment transport across marshes to show that pond formation leads to runaway marsh fragmentation, a process characterized by a self-similar hierarchy of pond sizes with power-law distributions. We find the threshold for marsh fragmentation scales primarily with tidal range and that sediment supply is only relevant where tides are sufficient to transport sediment to the marsh interior. Thus the RSLR threshold is controlled by organic accretion in microtidal marshes regardless of the suspended sediment concentration at the marsh edge. This explains the observed fragmentation of microtidal marshes and suggests a tipping point for widespread marsh loss

    Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes

    Get PDF
    Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4−/− mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4−/− mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4−/− mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4−/− BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4−/− brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state

    Anidulafungin compared with fluconazole for treatment of candidemia and other forms of invasive candidiasis caused by Candida albicans: a multivariate analysis of factors associated with improved outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Candida albicans </it>is the most common cause of candidemia and other forms of invasive candidiasis. Systemic infections due to <it>C. albicans </it>exhibit good susceptibility to fluconazole and echinocandins. However, the echinocandin anidulafungin was recently demonstrated to be more effective than fluconazole for systemic <it>Candida </it>infections in a randomized, double-blind trial among 245 patients. In that trial, most infections were caused by <it>C. albicans</it>, and all respective isolates were susceptible to randomized study drug. We sought to better understand the factors associated with the enhanced efficacy of anidulafungin and hypothesized that intrinsic properties of the antifungal agents contributed to the treatment differences.</p> <p>Methods</p> <p>Global responses at end of intravenous study treatment in patients with <it>C. albicans </it>infection were compared post-hoc. Multivariate logistic regression analyses were performed to predict response and to adjust for differences in independent baseline characteristics. Analyses focused on time to negative blood cultures, persistent infection at end of intravenous study treatment, and 6-week survival.</p> <p>Results</p> <p>In total, 135 patients with <it>C. albicans </it>infections were identified. Among these, baseline APACHE II scores were similar between treatment arms. In these patients, global response was significantly better for anidulafungin than fluconazole (81.1% vs 62.3%; 95% confidence interval [CI] for difference, 3.7-33.9). After adjusting for baseline characteristics, the odds ratio for global response was 2.36 (95% CI, 1.06-5.25). Study treatment and APACHE II score were significant predictors of outcome. The most predictive logistic regression model found that the odds ratio for study treatment was 2.60 (95% CI, 1.14-5.91) in favor of anidulafungin, and the odds ratio for APACHE II score was 0.935 (95% CI, 0.885-0.987), with poorer responses associated with higher baseline APACHE II scores. Anidulafungin was associated with significantly faster clearance of blood cultures (log-rank <it>p </it>< 0.05) and significantly fewer persistent infections (2.7% vs 13.1%; <it>p </it>< 0.05). Survival through 6 weeks did not differ between treatment groups.</p> <p>Conclusions</p> <p>In patients with <it>C. albicans </it>infection, anidulafungin was more effective than fluconazole, with more rapid clearance of positive blood cultures. This suggests that the fungicidal activity of echinocandins may have important clinical implications.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00058682">NCT00058682</a></p

    Confinement in Covariant Gauges

    Full text link
    We examine the weak coupling limit of Euclidean SU(n) gauge theory in covariant gauges. Following an earlier suggestion, an equivariant BRST-construction is used to define the continuum theory on a finite torus. The equivariant gauge fixing introduces constant ghost fields as moduli of the model. We study the parameter- and moduli- space perturbatively. For nf≤nn_f \leq n quark flavors, the moduli flow to a non-trivial fixed point in certain critical covariant gauges and the one-loop effective potential indicates that the global SU(n) color symmetry of the gauge fixed model is spontaneously broken to U(1)n−1U(1)^{n-1}. Ward identities and renormalization group arguments imply that the longitudinal gauge boson propagator at long range is dominated by n(n−1)n(n-1) Goldstone bosons in these critical covariant gauges. In the large nn limit, we derive a nonlinear integral equation for the expectation value of large Wilson loops assuming that the exchange of Goldstone bosons dominates the interaction at long range in critical covariant gauges. We find numerically that the expectation value of large circular Wilson loops decreases exponentially with the enclosed area in the absence of dynamical fermions. The gauge invariance of this mechanism for confinement in critical covariant gauges is discussed.Comment: 45 pages, Latex, uses psfig.sty and epsfig.sty to include postscript-figure

    Reconciling models and measurements of marsh vulnerability to sea level rise

    Get PDF
    Tidal marsh survival in the face of sea level rise (SLR) and declining sediment supply often depends on the ability of marshes to build soil vertically. However, numerical models typically predict survival under rates of SLR that far exceed field-based measurements of vertical accretion. Here, we combine novel measurements from seven U.S. Atlantic Coast marshes and data from 70 additional marshes from around the world to illustrate that—over continental scales—70% of variability in marsh accretion rates can be explained by suspended sediment concentratin (SSC) and spring tidal range (TR). Apparent discrepancies between models and measurements can be explained by differing responses in high marshes and low marshes, the latter of which accretes faster for a given SSC and TR. Together these results help bridge the gap between models and measurements, and reinforce the paradigm that sediment supply is the key determinant of wetland vulnerability at continental scales
    • …
    corecore