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SUMMARY

Salt marshes are valuable but vulnerable coastal ecosystems that adapt to relative sea level rise (RSLR) by accumulating
organic matter and inorganic sediment. The natural limit of these processes defines a threshold rate of RSLR beyond which
marshes drown, resulting in ponding and conversion to open waters. We develop a simplified formulation for sediment transport
across marshes to show that pond formation leads to runaway marsh fragmentation, a process characterized by a self-similar
hierarchy of pond sizes with power-law distributions. We find the threshold for marsh fragmentation scales primarily with tidal
range and that sediment supply is only relevant where tides are sufficient to transport sediment to the marsh interior. Thus the
RSLR threshold is controlled by organic accretion in microtidal marshes regardless of the suspended sediment concentration
at marsh edge. This explains the observed fragmentation of microtidal marshes and suggests a tipping point for widespread
marsh loss.
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Introduction1

There is a growing consensus that marsh vulnerability to rela-2

tive sea level rise (RSLR) is tied to inorganic sediment availabil-3

ity1–4, where deposition of inorganic sediment increases with4

flooding duration, and potentially offsets sea level rise. Indeed,5

inorganic deposition rates have accelerated over the last cen-6

tury concomitant with sea level rise5,6 and historic marsh loss7

has been observed (and projected7,8) mostly in sediment-poor8

systems9,10 and microtidal marshes11. Modeled threshold9

rates of RSLR for marsh drowning, using simplified point (0-D)10

models, increase by 2 orders of magnitude as a function of11

suspended sediment concentration and tidal range12,13. How-12

ever, a contrasting body of work emphasizes the importance13

of organic matter accumulation in building marsh soils in the14

face of sea level rise, especially in the sediment deficient estu-15

aries most vulnerable to sea level rise1,11,14–17. Total marsh16

accretion rates are more strongly correlated with the organic17

fraction of marsh soil than the inorganic fraction14; organic18

matter contributes 4 times more soil volume than an equiva-19

lent mass of inorganic sediment16; and organic matter is the20

dominant contribution to marsh accretion by volume in many21

Atlantic and Gulf Coast marshes14–16.22

Competing ideas about the relative importance of organic23

and inorganic accretion likely reflect strong spatial gradients24

within marshes18–20. Inorganic accretion increases with sus-25

pended sediment concentration and flooding depth, and de-26

creases with distance to tidal channels, as reported both in27

the field21–25 and in models18–20,25–29. Organic accretion28

is influenced by the production and decomposition of plant29

biomass, both of which vary spatially across marshes in re-30

sponse to flooding depth as well as other factors. Moreover,31

vegetation itself enhances inorganic sediment deposition so32

that organic and inorganic contributions are thoroughly inter-33

twined30,31. These spatial gradients of organic and inorganic 34

deposition lead to complex patterns of marsh accretion and 35

submergence that are sometimes difficult to explain. For ex- 36

ample, marshes along the Blackwater River (MD, USA) are 37

rapidly submerging despite having a higher suspended sed- 38

iment concentrations measured in channels, than in nearby 39

stable marshland32,33. Elsewhere, marshes are submerging 40

despite measured accretion rates that are similar to or ex- 41

ceed RSLR2,33, which suggests measurements take place 42

mostly along marsh edges, where maximum accretion rates 43

are generally observed21,23,34,35. 44

The complexity of organic and inorganic accretion in a 45

marsh platform leads to the simple question: where in a marsh 46

should organic and inorganic contributions to marsh accre- 47

tion be characterized to best evaluate marsh vulnerability to 48

RSLR? Measurements from high elevation portions of a marsh 49

potentially underestimate future marsh accretion because inor- 50

ganic accretion rates may accelerate with increased flooding 51

duration2. However, if low elevation marshes are also closest 52

to channels, then accretion rates from low elevation portions 53

of the marsh would overestimate accretion to the marsh as a 54

whole, and lead to an underestimation of marsh vulnerability 55

to RSLR. 56

Another issue with the interpretation of measured accretion 57

rates is that they tend to converge towards the local rate of 58

RSLR, as the marsh platform approaches an equilibrium eleva- 59

tion36, which complicates the estimation of maximum accretion 60

rates unless marshes are already drowning2,37. Thus, there 61

is a need for better numerical models that resolve the spatial 62

complexity of marsh sediment dynamics4,13,19,27,28,38–40. 63

A few existing process-based models (e.g.19,28) capture the 64

observed drowning of interior marshes and their conversion to 65

ponds41–43. They suggest marsh drowning, and subsequent 66
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pond formation, is not described by a single threshold but67

is instead a gradual process where different portions of the68

marsh platform drown at different rates of RSLR. Therefore,69

existing models with RSLR rates just slightly faster than the70

threshold for drowning would produce an equilibrium state71

characterized by relatively few, isolated ponds, far from the72

channel edge.73

Here, we uniquely show that there is no equilibrium state for74

a marsh platform once a local threshold for marsh drowning75

has been crossed, resulting in runaway marsh fragmentation.76

Theoretical considerations and field observations indicate that77

the threshold for marsh drowning does not change much with78

sediment supply in microtidal marshes, suggesting a dispro-79

portionate role of organic accretion.80

Model approach81

We use a one-dimensional formulation for the mass conser-82

vation of water and inorganic sediments in the absence of83

erosion4,27,28,38,39,44, to derive a minimal sediment transport84

model that captures the central physics of the system (the85

complete model is described in the Experimental Procedures;86

see Figs. S1 and S2 for examples of the solutions). This sim-87

plified model allows us to define and calculate the drowning88

threshold and characterize the dynamics of the ensuing marsh89

fragmentation without the need of spatially-explicit hydrody-90

namic models26,27,29,39,45.91

The current understanding of the onset of marsh loss is92

that it takes place whenever marsh depth relative to mean93

high water is higher than a critical value Dc above which94

marshes are replaced by tidal flats or ponds as the more95

stable morphology43,46–49. Indeed, field data suggests marsh96

conversion to tidal flats starts at a critical depth Dc around97

35% of the tidal range d z, which corresponds to an average98

rescaled inundation time, i.e. fraction of time the marsh is99

submerged tc ⇡ p�1
arccos(1�2Dc/d z), of about 0.4 (Fig. 1B,100

see Table S1 for details)42,43,46–48.101

Assuming the existence of a critical depth for marsh recov-102

ery, a general condition for the onset of local marsh drowning103

is when the rate R of RSLR exceeds the sum of the organic104

(Ac
o) and inorganic (Ac

i ) accretion rates evaluated at the critical105

depth Dc (Fig. 1A). Because of the spatial variation of inorganic106

deposition, the lowest inorganic accretion rate at the critical107

depth thus defines the lowest threshold (Rc) for local marsh108

drowning: Rc = Ac
o +min{Ac

i }.109

We derive a general expression for Rc from a simplified110

model of the inorganic accretion rate Ai(x,D) across a marsh111

platform with variable depth D(x), as function of the dis-112

tance x to the sediment sources. In the absence of erosion,113

we assume Ai(x,D) can be written in terms of the depth-114

dependent rescaled average inundation time t(D) and the115

depth-independent sediment concentration C(x), as Ai(x,D) =116

r�1

i w f t(D)C(x), where ri is an average density of deposited117

sediments1, w f is an effective settling velocity and C is defined118

as the local depth-averaged suspended sediment concentra-119

tion (SSC) averaged over times of positive water depths in a120

tidal cycle (see Experimental Procedures).121

In what follows we present and validate an explicit expres-122

sion for the inorganic accretion rate across the marsh platform123

and use it to obtain the critical inorganic accretion rate for124

marsh drowning. We then introduce the drowning threshold,125

characterize the runaway marsh fragmentation regime and 126

discuss the effect of external parameters on marsh drowning. 127

Results 128

Exponential decay of sediment concentration 129

As inorganic sediments in the water column settle on the marsh 130

surface, where erosion is assumed to be negligible27, the av- 131

eraged sediment concentration C decays with the distance 132

x from the channel or tidal flat (Fig. 2). Sediment concen- 133

tration thus reaches its lowest value at the location furthest 134

away—a distance L—from marsh edges (Fig. 2A), defined in 135

the model as the watershed divide. This decay in sediment 136

concentration is well approximated by an exponential function, 137

C(x) =C(0)e�x/Lc (as proposed by25 and observed by23), with 138

decay length Lc (see Experimental Procedures). Therefore, 139

the inorganic accretion rate for a non-flat marsh platform can 140

be approximated as 141

Ai(x,D(x))⇡ r�1

i w f t(D(x))C(0)e�x/Lc , (1)

where the average sediment concentration C(0) at the channel 142

bank or marsh edge is proportional to the average concentra- 143

tion C0 at the channel or mud flat during flood (see Fig. S3 for 144

the proportionality factor). 145

The decay length Lc of the average suspended sediment 146

concentration scales as the ratio of the tidal discharge per unit 147

width and the effective sediment settling velocity w f , in agree- 148

ment with the scaling of the deposition length in unidirectional 149

turbulent suspensions50 (Experimental Procedures). We find 150

tidal discharge per unit width scales as Ld z/T , where d z is 151

the tidal range, T is the tidal period and L is the characteristic 152

length of the local drainage basin. Thus, the decay length has 153

the form 154

Lc = bLd z/(Tw f ) , (2)
with fitting parameter b ⇡ 1.5, in agreement with both numeri- 155

cal simulations and analytical approximations (Experimental 156

Procedures and Fig. 2B). 157

We find the exponential approximation accurately describes 158

the sediment concentration profile except in the region around 159

the watershed divide, where tidal flow stops and the simulated 160

average sediment concentration, and thus accretion rates, 161

converge to zero (Fig. 2). In reality, complex tidal flows may 162

lead to residual accretion rates in the marsh interior (e.g.22), in 163

which case the exponential approximation provides an upper 164

limit to evaluate the resiliency of drowning marshes. In what 165

follows we use the watershed divide as a formal definition of 166

the marsh interior. 167

The exponential decay correctly predicts the spatial gradient 168

in the average sediment concentration and inorganic accretion 169

rates for a wide variety of salt marshes (Fig. 3), including low- 170

elevation micro-tidal marshes in the Virginia eastern shore 171

(Phillips Creek)34 and Georgia35, and meso- and macro-tidal 172

marshes in Plum Island, MA51, Norfolk, UK21 and in the Bay of 173

Fundy, CA52 (see Experimental Procedures for further details 174

on the analysis and interpretation of inorganic accretion data). 175

The scaling of Lc with the tidal range d z (Eq. 2) means that 176

suspended sediments deposit closer to channels (or tidal flats) 177

at lower tidal ranges, whereas they are more homogeneously 178

distributed at higher tidal ranges. This is consistent with the 179
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trend observed in field measurements (Fig. 3), in particular the180

contrast between the almost homogeneous inorganic accretion181

in the Bay of Fundy, CA52 (d z= 11m), and the noticeable decay182

observed in Phillips Creek, US25 (d z = 2m).183

Critical inorganic accretion rate184

The scaling of the sediment decay length Lc with the local185

drainage basin length L (Eq. 2) follows from the approximate186

scale invariance of tidal flows44, i.e. faster flows—and increas-187

ing sediment advection—on larger basins. This scale invari-188

ance, where sediments are deposited farther away from the189

channels in large basins as compared to small ones (Fig. S4),190

has one important implication: the lowest inorganic accre-191

tion rate at the critical depth Dc for marsh conversion to tidal192

flats Ac
i (L)⌘ Ai(L,Dc), reached at the watershed divide x = L193

(Eq. 1), does not depend on drainage basin size L and can be194

evaluated without the need of spatially-explicit hydrodynamic195

models. Indeed, after substituting the scaling for the decay196

length we get for the critical inorganic accretion rate:197

Ac
i (L) = Ac

i (0)e
�1/`c , (3)

where `c = Lc/L = b/w+
f is the rescaled decay length, which198

only depends on the rescaled effective falling velocity w+
f =199

w f T/d z, and Ac
i (0)⌘ Ai(0,Dc) is the inorganic accretion rate at200

the critical depth in the marsh edge (Eq. 1). Using the scaling201

C(0)= r(w+
f )C0 we find for the flood-ebb average sediment con-202

centration at the marsh edge (see Experimental Procedures),203

we get the explicit expression204

Ac
i (0) = r�1

i C0w f r(w+
f )tc , (4)

with tc ⌘ t(Dc). Thus, the critical inorganic accretion rate205

(Eq. 3) is completely determined by external, measurable pa-206

rameters, characterizing sediment supply to the marsh (C0),207

effective sediment properties (w f and ri) and tides (d z and T ).208

An important consequence of the physical mechanisms209

driving sediment redistribution across the marsh platform, as210

summarized in Eq. 3, is that the critical inorganic accretion211

rate strongly depends on the tidal range (Fig. 4). For typical212

values of the parameters, Ac
i (L) becomes negligible for tidal213

ranges d z < 1m regardless of the sediment supply (Fig. 4),214

in stark contrast to the critical inorganic accretion rate at the215

marsh edge Ac
i (0) (Fig. 4A). More generally, for most microtidal216

marshes (d z < 1.5m) the predicted critical accretion rate in the217

marsh interior (Ac
i (L)) is below common rates of RSLR (2.5-218

5mm/yr) (Fig. 4B) and organic accretion becomes crucial for219

marsh survival.220

Threshold for marsh drowning and the onset of runaway221

marsh fragmentation222

The marsh accretion rate at the critical depth in the marsh223

interior, Ac
o + Ac

i (L), defines the lowest threshold for marsh224

drowning Rc (Fig. 5A). When relative sea level rises at a lower225

rate (R < Rc), marshes are stable by definition and bare areas226

with an elevation above the critical depth can recover with227

time42. When relative sea level rises at a faster rate (R > Rc),228

interior marshes drown and form permanent ponds.229

Simulations of the time evolution of marsh elevation Z(x, t)230

(see Experimental Procedures for model details), show marsh231

fragmentation regime strongly depends on whether perma- 232

nent ponds are isolated or connected to the channel network 233

(Fig. 5A). In the first case, tidal basins and watershed divides 234

remain unchanged and the system evolves towards a new 235

equilibrium state (Fig. 5A, left). The portion of the marsh 236

closer to the edge adapts to RSLR and reaches a non-uniform 237

equilibrium marsh elevation in response to spatial gradients of 238

sediment concentration, e.g. as in the formation of natural lev- 239

ees53. We find the equilibrium pond size scales with the size of 240

the local basin and increases with the rate R of RSLR (Fig. 5A 241

left, see Experimental Procedures for pond size calculation). 242

However, isolated ponds tend to connect to the channel net- 243

work via the formation of new small channels41,42,49, thereby 244

increasing channel density and shrinking tidal basins. Based 245

on this, we assume in our model that once ponds are deep 246

enough they connect to channels and become a source of 247

sediment and tidal flow (see Experimental Procedures). Re- 248

gardless of the specific conditions for when and how ponds 249

connect, simulations show there is no marsh equilibrium as 250

long as permanent ponds are able to connect to the channel 251

network. Instead, marshes experience a continuous (runaway) 252

fragmentation at a rate controlled by the ratio R/Rc (Fig. 5A, 253

right). 254

The runaway fragmentation can be understood as follow: 255

although there are more channels (and connected ponds) 256

to potentially redistribute sediments into the marsh platform, 257

the sediment will be deposited closer to the banks as water 258

flow slows down in the now smaller basins (see Eq. 2). As 259

a result, the drowning threshold Rc = Ac
o +Ac

i (L) is crossed 260

around the watershed divide of the new system, leading to 261

marsh drowning at ever smaller scales. Therefore, with time, 262

marsh fragmentation propagates from large to small scales 263

following the adjustment of the channel network and tidal flows, 264

until most of the marsh is lost. 265

We can obtain an upper-bound for the threshold rate of 266

RSLR for the onset of runaway marsh fragmentation (Rc = 267

Ac
o +Ac

i (L), Fig. 6) using a theoretical estimation of the max- 268

imum contribution of organic accretion for salt marshes1
269

(Ac
o ⇡ 3mm/yr). This value is consistent with accretion rate 270

data of Mid-Atlantic US salt marshes and falls within a broader 271

range of direct and indirect estimations of organic accretion 272

rates of marshes elsewhere (see Fig. S5 and Supplemental 273

Experimental Procedures). Similarly to the trend of inorganic 274

accretion rates with tidal range (Fig. 4), the predicted threshold 275

Rc (Fig. 6) shows a fundamental vulnerability for microtidal 276

marshes (d z < 1.5m) and marshes with relatively low sediment 277

supply (average SSC at the channel bank or marsh edge in 278

the range C0 < 20 g/m3). 279

Self-similarity of marsh fragmentation and power-law dis- 280

tribution of pond size 281

Because pond size scales with basin size (see Experimental 282

Procedures), the progressive shrinking of tidal basins during 283

marsh fragmentation should lead to a self-similar hierarchy of 284

pond sizes with a Pareto (power-law) distribution54. Indeed, we 285

find a power-law distribution of pond areas and a self-similar 286

pattern of marsh loss, in both, our model simulations of marsh 287

fragmentation (shown in Fig. 5A, where pond area is defined 288

as the square of its length) and in rapidly submerging marshes 289

in Blackwater, MD and Louisiana (Fig. 5), where drowning 290
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begins near the watershed divide and propagates towards the291

channels41.292

Interestingly, the exponent of the power-law distribution of293

the area of simulated ponds changes little with the rate of294

RSLR above the threshold Rc, and is very similar to the one295

obtained for small to medium-size ponds (. 10
5m2) in Black-296

water55 (Fig. 5B). The exponent (⇠1.5) is consistent with a297

simple ‘period-doubling’ mechanism, where whenever a pond298

connects to the channel network it creates two new ponds with299

half the diameter (one quarter of the area) of the ‘parent’ one.300

The size distribution of large ponds in Louisiana56 has301

a larger exponent (⇠2.5) similar to the one for similar-size302

ponds in Blackwater (Fig. 5B), which suggests a further scale-303

invariant mechanism affecting pond growth.304

Discussion305

Vulnerability of microtidal marshes306

Although marsh vulnerability has been traditionally tied to307

inorganic sediment availability, we find consistently low in-308

organic accretion in the interior of most microtidal marshes309

(. 2.5mm/yr, one sixth of existing predictions, e.g.18,19,28, see310

Fig. 4B) regardless of sediment supply. This vulnerability is311

highest for marshes with tidal ranges < 1m (Fig. 4B), where312

inorganic accretion in the marsh interior is negligible and the313

threshold RSLR rate seems to be completely determined by314

organic accretion. This explains the apparent contradiction of315

Blackwater marshes, where a relatively high suspended sedi-316

ment concentration in the channels does not prevent drown-317

ing32,33. With a tidal range < 0.5m, inorganic accretion is318

irrelevant for the vast majority of the marsh platform. Thus,319

it is enough for the local rate of RSLR to be higher than the320

organic accretion rate to induce widespread drowning (Fig. 6).321

This indeed seems to be the case in both Blackwater57, and322

in the Mississippi Delta, where the threshold for continuous323

marsh loss was estimated to be about 3mm/yr58, very similar324

to model prediction for d z < 1m (Fig. 6). The predicted low325

inorganic deposition in the marsh interior also agrees with326

the predominantly organic composition of sediments found in327

many marshes with tidal range < 1m (e.g. Blackwater, MD57;328

Gulf of Mexico14).329

While organic accretion is a complex function of several330

factors, such as plant species, water salinity, flooding fre-331

quency, water and soil temperature and composition10,16, a332

meta-analysis of field data reveals organic accretion rates are333

in the range of 3.0±2.0mm/yr (Fig.S5 and Supplemental Ex-334

perimental Procedures), which happens to be in the range of335

observed RSLR rates. Therefore, it seems we currently are336

at the tipping point for widespread drowning of global microti-337

dal salt marshes regardless of the local inorganic sediment338

supply (Fig. 6). Indeed, the model correctly predicts the drown-339

ing of Blackwater marshes and marshes in the Mississippi340

Delta58, and also suggests marshes in Venice, the Virginia341

Eastern Shore (e.g. Phillips Creek) and Plum Island, MA, are342

particularly vulnerable (Fig. 6).343

We thus provide a mechanistic explanation for the widely344

observed fragility of microtidal marshes11 and show this vul-345

nerability is intrinsic and tied to the dominant role of organic346

accretion. Therefore, factors altering biomass productivity and347

decomposition, such as eutrophication, elevated CO2 and cli-348

mate warming10,11,19,59, could decide the mid-term response 349

of global microtidal marshes, while measures aimed at increas- 350

ing sediment delivery could have limited success. 351

Runaway marsh fragmentation 352

The runaway marsh fragmentation induced by the approximate 353

scale invariance of sediment deposition44, constitutes a new 354

form of marsh destabilization that transforms the local cross- 355

ing of the marsh drowning threshold into the onset of eventual 356

widespread marsh loss. This mechanism only requires that 357

connected ponds decrease the size of local drainage basins, 358

regardless of whether they deliver sediment to the marsh plat- 359

form or not. In the best case scenario depicted in Fig. 5A, 360

connected ponds redistribute inorganic sediment as effective 361

as large channels or mud flats, which is not the case in reality. 362

Any decrease in sediment delivered by connected ponds leads 363

to lower inorganic accretion rates on the surrounding marshes, 364

thereby accelerating marsh drowning. 365

The scale invariance of sediment deposition, where sedi- 366

ment is deposited closer to the banks in smaller basins, under- 367

pinning the runaway marsh fragmentation is consistent with 368

observations that an increased density of artificial channels 369

does not increase overall sedimentation (e.g. Louisiana60) and 370

in some cases resulted in subsidence (e.g. New England61). 371

Furthermore, the predicted acceleration of marsh fragmen- 372

tation with the rate of RSLR (Fig. 5A) is consistent with the 373

rapidly increased rate of historic marsh loss measured in the 374

Mississippi Delta as RSLR accelerated58. 375

The marsh fragmentation mechanism explains the formation 376

of a broad range of pond sizes, and predicts that their size 377

distribution should follow a power-law, in agreement with data 378

from Blackwater marshes (Fig 5B). It also predicts a particular 379

temporal sequence of marsh fragmentation, as large initial 380

ponds eventually lead to smaller ones at a rate increasing with 381

the rate of RSLR relative to the drowning threshold (Fig. 5A), 382

and suggests the area of the larger ponds depends on the 383

initial distribution of tidal basin areas. This multi-scale mecha- 384

nism complements existing models of pond growth driven by 385

lateral expansion instead of RSLR40,62. 386

Conclusions 387

We derive a simplified model of sediment transport in the 388

absence of erosion that explains patterns of sediment depo- 389

sition and marsh vulnerability in a wide variety of conditions. 390

Our model leads to an analytical prediction of inorganic ac- 391

cretion that complements direct measurements of accretion, 392

which necessarily reflect historical rather than future environ- 393

mental conditions2. We predict a new form of marsh destabi- 394

lization characterized by a progressive fragmentation of the 395

marsh platform, triggered by the drowning of interior marshes. 396

The threshold for this runaway marsh fragmentation is much 397

lower than existing predictions13,63 and is largely decoupled 398

from inorganic sediment supply in microtidal environments, 399

which explains the observed fragility of microtidal marshes. 400

Beyond microtidal marshes, the much-lower marsh fragmenta- 401

tion thresholds predicted by our model suggest a re-evaluation 402

of the resiliency of global marshes under current and future 403

scenarios63. 404
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Experimental Procedures405

Resource Availability406

Lead Contact407

Further information and requests for resources and reagents408

should be directed to and will be fulfilled by the Lead Contact,409

Orencio Duran Vinent (oduranvinent@tamu.edu)410

Materials Availability411

The original (unpublished) data used in this study is available412

in Table S2.413

Data and Code Availability414

This study did not generate new datasets. The MatLab code415

integrating the model equations is available upon request from416

the Lead Contact.417

Minimal model of sediment transport on a marsh418

We consider one-dimensional depth-integrated mass conser-419

vation equations for tidal water discharge per unit width Q(x, t)420

and depth-averaged suspended sediment concentration of421

inorganic sediments C(x, t) over a marsh surface with eleva-422

tion Z(x) relative to mean sea level (MSL). Assuming, (i) a423

quasi-static tidal propagation with average water elevation424

(relative to MSL) h(t) = (d z/2)cos(2pt/T ) with tidal range d z425

and period T , (ii) no net sediment erosion, and (iii) negligible426

lateral diffusion, the conservation of suspended sediments427

reads4,27,28,38,39,44:428

∂t(HC)+∂x(QC) = �w f C (5)

where x is the distance from the marsh edge (channel bank or429

tidal flat) along the flow direction, H(x, t) = h(t)�Z(x) is local430

water depth and w f is an effective sediment falling velocity. Q is431

obtained from the continuity equation ∂xQ=�∂th assuming no432

water flux (Q(L, t) = 0) at the watershed divide x = L: Q(x, t) =433

∂th (L� x) =�d zLT�1p sin(2pt/T )(1� x/L). Q thus scales as434

d zL/T .435

For simplicity, Eq. 5 is numerically integrated for a flat436

marsh surface during positive water depths (H(t) > 0) using437

two boundary conditions, a constant suspended sediment438

concentration (C(0, t) = C0) at the channel bank (x = 0) dur-439

ing flood (t < 0) and no sediment crossing the watershed440

divide (C(L, t) = 0) during ebb (t > 0). Using rescaled time441

(t+ = t/T ) and distance (x+ = x/L), the rescaled concentra-442

tion C(x+, t+)/C0 for a given marsh elevation Z is only function443

of one dimensionless number: the rescaled effective falling444

velocity w+
f = w f T/d z (Fig. S1).445

Approximation for the tidal-averaged sediment transport446

A further simplification is obtained by averaging Eq. 5, valid for447

a non-flat marsh elevation Z(x), over times of positive water448

depths in a tidal cycle, and neglecting the changes to the449

gradient of sediment fluxes (QC) due to variable elevation,450

∂xQC ⇡�w f C , (6)

where the bar denotes an average of the form451

C(x)⌘ t(D)�1

Z t(D)/2

�t(D)/2

C(x, t+)dt+ (7)

where t(D) is the rescaled local inundation time and D(x) = 452

d z/2�Z(x) is the local depth. 453

Because the main effect of a non-flat marsh platform is to 454

change the local inundation time t(D), this averaging removes, 455

in a first approximation, the dependence on marsh elevation 456

and thus its solution has the form C ⇡C(x). Therefore, we can 457

use the numerical solution of Eq. 5 for a flat marsh to obtain a 458

correlation between the average sediment flux per unit width 459

(QC) and the average suspended sediment concentration (C). 460

This correlation is expected when transport is dominated by 461

advection instead of diffusion. 462

Indeed, in the range x/L . 0.6, we find (see Fig. S2) 463

QC(x)⇡ bd zLT�1
�
C(x)�C(L)

�
, (8)

where b = 1.5 is a fitting constant and C(L) is defined as 464

an effective sediment concentration at the watershed divide 465

x = L. This definition follows from the boundary condition of no 466

average sediment transport across the watershed divide, i.e. 467

QC(L) = 0. Using Eq. 8, the total mass of sediment deposited 468

on the 1-D marsh during one tidal cycle, t(D)T
R L

0
w f C(x)dx, 469

can be approximated by integrating Eq. 6 as QC(0)t(D)T ⇡ 470

bd zLt(D)
�
C(0)�C(L)

�
. 471

Substituting the advection approximation (Eq. 8) into Eq. 6, 472

we get an equation for the average suspended sediment con- 473

centration 474

b L∂xC ⇡�w+
f C (9)

which has the exponentially decaying solution 475

C(x) =C(0)exp(�x/Lc) (10)

with decay length Lc = bL/w+
f , or Lc = bLd z/(Tw f ) after sub- 476

stituting w+
f . 477

From Eq. 6, the scaling of the decay length has the more 478

general form Lc µ Q/w f (as can be verified using Q µ d zL/T ), 479

which is equivalent to the scaling of the decay or deposition 480

length in unidirectional turbulent suspensions50: Lc µ HU/w f µ 481

Q/w f , where H is the flow depth, U is the (constant) flow 482

velocity and Q µ UH is the water discharge per unit width. 483

Finally, the boundary condition C(0) in Eq. 10 is obtained 484

numerically from Eq. 5 by averaging C(0, t) over one tidal cycle, 485

which gives (see Fig. S3) 486

C(0) =C0r(w+
f ) (11)

with fitting function 487

r(w+
f ) =

⇣
1+(1+w+

f )
�1

⌘
/2 . (12)

This function quantifies the average sediment concentration 488

of the ebb flow leaving the marsh platform. Defining C(0) ⌘ 489

[Cflood(0)+Cebb(0)]/2, substituting Eqs. 11 and 12, and using 490

our assumption of a constant concentration at the marsh edge 491

during flood (Cflood(0) =C0), we get, 492

Cebb(0) =C0

⇣
2r(w+

f )�1

⌘
=C0/(1+w+

f ) . (13)

For small tidal ranges, the rescaled falling velocity diverges, 493

Cebb(0) ! 0 and most of the sediment is deposited on the 494

marsh. For large tidal ranges, the opposite is true, w+
f ! 0 and 495

Cebb(0)!C0, i.e. most of the sediment leaves the march. 496
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Inorganic accretion rate497

In the absence of erosion, the net inorganic accretion rate498

averaged over a tidal cycle is defined as the volume of inor-499

ganic sediments suspended in the water column that settles500

on the marsh surface per unit area and unit time, and can501

be approximated as Ai(x,D) = r�1

i w f t(D)C(x), where ri is502

the long-term averaged density of deposited sediments1 and503

t(D)⇡ p�1
arccos(1�2D/d z) is the average rescaled inunda-504

tion time. Using Eq. 10, Ai(x,D) can be approximated as505

Ai(x,D)⇡ r�1

i C0r(w+
f )w f t(D)exp(�x/Lc) . (14)

In general, sediment transport properties (C0, Lc, D, t(D), etc.)506

change with tidal range. However, in what follow (as within507

the main-text) we assume the average inorganic accretion rate508

can be simply calculated by Eq. 14 evaluated at a mean tidal509

range, denoted as d z for simplicity. When comparing to field510

data, d z is the mean over the measurement period, otherwise511

we use a representative value.512

Simplified one-dimensional model of marsh dynamics513

In order to calculate the response of the marsh/mud elevation,514

Z(x, t) = d z/2�D(x, t), to a rate R of RSLR, we propose a515

minimal model for the total accretion rate ∂tZ as function of516

the local elevation that describes: (i) marsh drowning, (ii)517

the formation of isolated ponds and (iii) the changes in the518

accretion rates once isolated ponds connect to the channel519

network. This model is used to generate the simulations shown520

in Fig. 5A.521

We assume that above a critical elevation Zc for marsh re-522

covery (see “Model approach” in the main text), marshes are523

widespread and both inorganic and organic accretion con-524

tributes to ∂tZ. In that case, ∂tZ = Ai(x,Z, t)+Ao(D)�R, where525

Ao(D) is the depth-dependent organic accretion rate (by def-526

inition D = d z/2� Z). We assume that for elevations below527

Zc but above an arbitrary lower elevation Zt , marshes drown528

(Ao = 0) and form isolated ponds with no net inorganic accre-529

tion (Ai = 0). Thus, the average deepening rate of an isolate530

pond equals the rate of RSLR: ∂tZ = �R. Finally, when the531

pond elevation is below Zt , we assume ponds connect to the532

channel network and reach an equilibrium depth slightly lower533

than Zt , and thus ∂tZ = 0.534

The minimal marsh model has the form:535

∂tZ =

8
><

>:

Ai(x,Z, t)+Ao(D)�R for Z > Zc

�R for Zt < Z  Zc

0 for Z  Zt

(15)

Since we are primarily interested in drowning marshes, for536

which R > max{Ao} and thus are closer to the critical elevation537

Zc, we assume for simplicity a constant accretion rate Ao in the538

range Ac
o  Ao  max{Ao}, where Ac

o = Ao(Dc) is the organic539

accretion rate at the critical depth (Dc = d z/2�Zc).540

The inorganic accretion rate Ai(x,Z, t) is given by Eq. 14541

and can be written in terms of the critical accretion rate in the542

marsh interior, Ac
i (L) = Ai(L,Dc), as:543

Ai(x,Z, t) = Ac
i (L)

t(Z)
t(Zc)

exp

✓
1� `(x, t)

`c

◆
, (16)

where t(Z)= p�1
arccos(2Z/d z) is the rescaled inundation time544

at elevation Z, `c = b/w+
f is the rescaled decay length `c = Lc/L545

and the function `(x, t) 2 [0,1] is defined as the distance from 546

the edge of a channel (or connected pond) rescaled such that 547

`= 1 at the corresponding watershed divide (e.g. `(x) = x/L if 548

the marsh edge is at x = 0 and the watershed divide at x = L). 549

A further simplification is obtained by approximating 550

p�1
arccos(x) by (1� x)/2 in the rescaled inundation time t, 551

which gives 552

t(Z) = 1

2
� Z(x, t)

d z
. (17)

Using Zc/d z = 0.15 as the critical elevation for marshes (corre- 553

sponding to Dc = 0.35d z, see Fig. 1) we get t(Zc) = 0.35. 554

The function `(x, t) in Eq. 16 generalizes the concept of the 555

distance x to the marsh edge to account for the formation of 556

new connected ponds. We assume that connected ponds 557

change the geometry of the drainage basin and become a 558

new source of both tidal water and inorganic sediment with 559

concentration C0. As ponds get deeper than Zt and connect to 560

the channel network, we update the term `(x, t) to reflect the 561

positions x j of the new marsh edges (defined by the condition 562

Z(x j) = Zt ), and corresponding watershed divides (defined 563

as the midpoint between neighboring channels or connected 564

ponds.) 565

For the numerical integration of Eqs. 15, 16 and 17, rates are 566

rescaled by the drowning threshold Rc =Ao+Ac
i (L), lengths are 567

rescaled by the initial domain size L0, elevations are rescaled 568

by tidal range d z and times are rescaled by d z/Rc. Since 569

Ac
i (L) = Rc �Ao by definition, the model has five dimensionless 570

parameters: R/Rc, Ao/Rc, `c, Zc/d z and Zt/d z. 571

For the simulations shown in Fig. 5A, we choose values 572

representative of a microtidal marsh with moderate sediment 573

supply: d z = 1m and C0 = 50g/m3, with Ao = 3mm/yr, w f = 574

10
�4m/s and T = 12.5h. We thus get Ao/Rc = 0.78 and `c = 1/3. 575

We use a rescaled critical elevation Zc/d z = 0.15 consistent 576

with field data (Fig. 1B), and assume ponds with a depth 577

around MSL connect to channels, thus Zt/d z = 0. We change 578

the rescaled RSLR rates R/Rc in the range 0.8–5. The initial 579

condition is a marsh platform of rescaled elevation Z/d z = 0.4 580

and unit rescaled length, limited by tidal channels at both sides. 581

For the pond size distributions shown in Fig. 5B, we choose a 582

10km domain size. 583

Scaling of the equilibrium pond size Lp 584

The scale invariance of spatial sediment deposition patterns 585

leads to a similar scale invariance in the size, or diameter Lp, 586

of the resulting ponds. Assuming the edge of the pond, a 587

distance xp = L� Lp/2 from the channel bank, is at equilib- 588

rium with RSLR at the critical depth Dc, then R = Ac
o +Ac

i (xp) 589

(Eq. 15). Substituting Eq. 16 with Z(xp) = Zc and rescaled po- 590

sition of the pond edge `(xp) = xp/L = 1�Lp/(2L), and using 591

the definition of the drowning threshold Rc = Ac
o +Ac

i (L), the 592

rescaled equilibrium pond size is 593

Lp

L
= 2`c ln

✓
R�Ac

o
Rc �Ac

o

◆
, (18)

where, `c = b/w+
f = bd z/(Tw f ) is the rescaled sediment con- 594

centration decay length. 595

The rescaled equilibrium pond size (Eq.18) has two limits: 596

no permanent ponds (Lp = 0) for R  Rc, and no marshes 597

(Lp = 2L) above the highest drowning threshold at marsh edge, 598

R � Ac
o +Ac

i (0) = Ac
o +(Rc �Ac

o)exp(1/`c) (Fig. 5A). Note that 599
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this pond size is a minimum value as we assume no lateral600

pond erosion besides marsh drowning.601

Analysis and interpretation of inorganic accretion data602

To only test the dependence on the distance to channel,603

reported accretion rates Ai for Phillips Creek (Fig. 3D)604

were depth-corrected to eliminate the scaling with the605

flooding frequency: A⇤
i = Ait(D)/t(D), where t(D) =606

p�1
arccos(1�2D/d z) is the approximated rescaled inundation607

time and D is the mean marsh depth. We couldn’t perform a608

similar correction for Norfolk (Fig. 3E) because lack of detailed609

elevation data. However, the fact this marsh is relatively young610

and hasn’t reached a steady state elevation yet suggests the611

noticeable exponential decay in both the 5-year average ac-612

cretion rates and the values during individual tides is mainly613

due to the spatial gradient of sediment distribution21. For the614

Bay of Fundy, there is no obvious trend in accretion rates as615

they were poorly correlated with both marsh elevation (for the616

relevant range above 5.2m) and distance to channel (Fig. 3F).617

However, this is consistent with our prediction for very large618

tidal ranges (Eq. 2).619
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Figure 1. Critical depth for marsh recovery. (A) Sketch of the organic (Ao) and inorganic (Ai) accretion rates on a marsh platform as
function of the local water depth (D) relative to mean high water level (MHW) and rescaled by tidal range d z. Accretion rates (Ac

i and Ac
o) at the

critical depth for marsh recovery (Dc) determine the marsh response to sea level rise, where Ac
i (x) is in general function of the distance x to

sediment sources. (B) Estimated values for the rescaled critical depth (Dc/d z) at different locations suggested by field data: Blackwater, MD
(BW)49; Plum Island, MA (MA)42; Venice, Italy (general47,48 and for San Felice marshes49); Hallegat and Paulina marshes, NL (NL 1)43; and
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Figure S 1. Numerical solution of the rescaled depth-averaged sediment concentration C/C0 over a flat marsh
surface at a critical elevation Zc = 0.15d z (relative to mean sea level with tidal range d z) for two different rescaled
effective falling velocity w+

f = w f T/d z: w+
f = 4.5 (A) and w+

f = 0.45 (B). Time is rescaled by tidal period T = 12.5h,
and length by the distance L to marsh edge. For w f = 10�4m/s, the corresponding tidal range d z is 1m (A) and 10m
(B).
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Figure S 2. Correlation between the rescaled depth-integrated sediment flux CQ+
= CQ/(C0d zLT�1) and the

rescaled depth-averaged sediment concentration C+
= C/C0, both averaged over times of positive water depths, for

different rescaled effective falling velocity w+
f = w f T/d z (parametrized by a variable tidal range d z for constant w f ).

Dashed lines show the linear approximation QC+ ⇡ b [C+ �C+
(L)] with fitting constant b = 1.5 and where

C+
(L) = C+

(0)e�w+
f /b is the rescaled concentration at the watershed divide x = L. Solid lines show the approximated

maximum rescaled average sediment flux at marsh edge (x = 0), given by the relation QC+
(0) = b [C+

(0)�C+
(L)],

where both C+
(0) and C+

(L) are function of tidal range via the rescaled falling velocity w+
f (See Fig. S3). Simulation

data is shown only for the critical elevation Zc = 0.15d z, but a similar result is obtained for any other elevation.
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Figure S 4. Evidence of the scale invariance of inorganic deposition. (A) Scaling of the decay length Lc and the
drainage basin length L predicted by the analytical model. (B) Tidal channel network in Phillips Creek, VA, USA,
showing the apparent width of the levees (darker areas surrounding the channels) increasing with channel width,
which suggests sediment deposits in a wider region for larger tidal flows. (C) Linear scaling obtained from the
analysis of (B).
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Figure S 5. Approximate range of organic accretion rates. Organic accretion rates estimated from field data are
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Procedures for details).



Location tidal range
d z (m)

Dc/d z Reference

Blackwater, MD 0.5 0.4±0.2 Dc = d z/2�Zc ⇡ 0.2±0.1m, where Z ⇡ 0.05±0.1m is the
cross-over elevation between bare patches and vegetated
ones, 6. The uncertainty is approximated by the differ-
ence between the typical elevation of bare patches and
vegetated areas6.

San Felice, Venice 1.0 0.35±0.1 Dc = d z/2� Zc ⇡ 0.35± 0.1m, where Zc ⇡ 0.15± 0.1m is
the cross-over elevation between connected bare patches
and vegetated ones6. This choice is consistent with the
elevation above which marshes are generally found in the
Venice lagoon, in the range 0.1-0.2m7,8. The uncertainty
is approximated by the difference between the typical ele-
vation of connected bare patches and vegetated areas6.

Plum Island, MA 3 0.40±0.04 Dc = d z/2 � Zc ⇡ 1.2m, where Zc = 0.31m is the eleva-
tion (above MSL) of the lowest-elevation bare pool re-
ported9 (Duncan’s pool, site R-20 in Morris Island). The
uncertainty is the difference in elevation between Dun-
can’s pool and the next low-elevation revegetating pool
(Z = 0.42m above MSL, site RRP-2 in Law’s Point9). Thus
DDc = DZc = 0.1m.

Hallegat and Paulina
marshes, NL

4.8 0.40±0.06 Marsh recovery characterized by a critical value of average
rescaled inundation time, tc = 0.44±0.0210. Assuming a
constant tidal range, the rescaled inundation time t(D) at
a depth D can be written as t(D) ⇡ p�1 arccos(1�2D/d z).
Therefore, the rescaled critical depth is Dc/d z = 0.5(1�
cos(ptc)) ⇡ 0.40±0.03. We double the uncertainty to ac-
count for a broader region (depth) of marsh vulnerability10.

Western Scheldt, NL 4.9 0.3±0.1 Estimation from the reported occurrence probability of pio-
neer plants patches11, which is between 0-1% for depths
in the range 1–2m11. Thus Dc = 1.5±0.5m.

Table S 1. Estimation of the rescaled critical depth for marsh recovery (Dc/d z) shown in Fig. 1B. By definition,
Zc = d z/2�Dc is the critical elevation relative to MSL.



# A # A # A # A # A (m2)
1 50 51 89 101 211 151 1301 201 158637
2 52 52 89 102 221 152 1314 202 212723
3 52 53 91 103 222 153 1360 203 230824
4 54 54 92 104 223 154 1367
5 55 55 92 105 223 155 1370
6 55 56 92 106 227 156 1470
7 56 57 94 107 236 157 1524
8 56 58 100 108 248 158 1605
9 56 59 101 109 250 159 1679

10 57 60 106 110 254 160 1699
11 57 61 106 111 268 161 1820
12 57 62 108 112 272 162 2137
13 59 63 109 113 276 163 2510
14 59 64 110 114 289 164 2519
15 59 65 114 115 318 165 2554
16 60 66 114 116 320 166 2998
17 60 67 115 117 326 167 3134
18 61 68 119 118 329 168 3300
19 61 69 122 119 387 169 3435
20 64 70 123 120 393 170 3508
21 64 71 125 121 415 171 3656
22 64 72 129 122 428 172 3695
23 64 73 130 123 429 173 3730
24 65 74 130 124 447 174 4071
25 65 75 133 125 449 175 4174
26 65 76 135 126 452 176 4303
27 67 77 135 127 453 177 4335
28 67 78 135 128 541 178 4384
29 69 79 139 129 544 179 4428
30 70 80 139 130 558 180 4714
31 70 81 140 131 599 181 5514
32 71 82 140 132 608 182 6331
33 71 83 142 133 612 183 6537
34 73 84 144 134 614 184 6551
35 73 85 144 135 678 185 7713
36 74 86 149 136 720 186 8132
37 74 87 152 137 772 187 9022
38 74 88 156 138 844 188 9325
39 74 89 161 139 856 189 9986
40 75 90 163 140 907 190 13973
41 76 91 166 141 912 191 22799
42 77 92 169 142 957 192 29843
43 79 93 181 143 967 193 30100
44 80 94 184 144 976 194 34837
45 81 95 192 145 1097 195 38968
46 82 96 195 146 1135 196 40827
47 82 97 198 147 1137 197 55439
48 85 98 206 148 1188 198 70379
49 85 99 208 149 1249 199 70465
50 88 100 209 150 1285 200 89557

Table S 2. List of measured pond areas (A in m2) of ponds above 50m2 from a 2010 aerial image of Blackwater
marshes (MD)12 (see location of the selected region in Fig. 5C). Data used in Fig. 5B.



Supplemental Experimental Procedures

Organic accretion rates

For some locations in USA (North and South Carolina,
Mid-Atlantic and Texas & Florida) we used the data
compilation from3, which reports the total accretion rate
range (min and max values) and the slope (cm3g�1) of
the linear regression between organic mass accretion
rates (defined as the dependent variable, g cm�3yr�1)
and total accretion rates (defined as the independent
variable, cm yr�1). We then obtain min and max val-
ues for organic mass accretion rates and convert them
from mass to volume using an effective density of de-
posited organic matter: ro = 0.085 g/cm3, obtained from
a meta-analysis of bulk density measurements in global
marshes1. For Rhodes Island, US, we use reported
values of organic mass accretion rates2 converted to
volume using ro. We did the same for some marshes in
Louisiana, US4. We also used reported values of organic
accretion rates (mm/yr) for some locations in the Scheldt
estuary, NL5. For Venice, we estimate organic accretion
rates from reported total marsh accretion rates13, using
the average bulk density ⇡ 1 g/cm314 and the effective
values for the density of organic and inorganic deposited
sediments ri = 2 g/cm3 and ro = 0.085 g/cm3 respec-
tively1. The organic accretion rate data is shown in
Fig. S5.
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