23 research outputs found

    Metagenomes in the borderline ecosystems of the Antarctic cryptoendolithic communities

    Get PDF
    Antarctic cryptoendolithic communities are microbial ecosystems dwelling inside rocks of the Antarctic desert. We present the first 18 shotgun metagenomes from these communities to further characterize their composition, biodiversity, functionality, and adaptation. Future studies will integrate taxonomic and functional annotations to examine the pathways necessary for life to evolve in the extreme

    Metagenomics untangles potential adaptations of Antarctic endolithic bacteria at the fringe of habitability

    Get PDF
    Survival and growth strategies of Antarctic endolithic microbes residing in Earth's driest and coldest desert remain virtually unknown. From 109 endolithic microbiomes, 4539 metagenome-assembled genomes were generated, 49.3 % of which were novel candidate bacterial species. We present evidence that trace gas oxidation and atmospheric chemosynthesis may be the prevalent strategies supporting metabolic activity and persistence of these ecosystems at the fringe of life and the limits of habitabilit

    Metagenomics untangles potential adaptations of Antarctic endolithic bacteria at the fringe of habitability

    Get PDF
    8 páginas.- 5 figuras.- 20 referencias.- Supplementary data to this article can be found online at https://doi.org/10.1016/j.scitotenv.2024.170290Survival and growth strategies of Antarctic endolithic microbes residing in Earth's driest and coldest desert remain virtually unknown. From 109 endolithic microbiomes, 4539 metagenome-assembled genomes were generated, 49.3 % of which were novel candidate bacterial species. We present evidence that trace gas oxidation and atmospheric chemosynthesis may be the prevalent strategies supporting metabolic activity and persistence of these ecosystems at the fringe of life and the limits of habitability.C.C. is supported by the European Commission under the H2020 Marie Skłodowska-Curie Actions Grant Agreement No. 702057 (DRYLIFE). C.C. and L.S. wish to thank the Italian National Program for Antarctic Research for funding sampling campaigns and research activities in Italy in the frame of PNRA projects. The Italian Antarctic National Museum (MNA) is kindly acknowledged for financial support to the Mycological Section of the MNA and for providing rock samples used in this study stored in the Culture Collection of Antarctic fungi (MNA-CCFEE), University of Tuscia, Italy. M.D-B. is supported by a project from the Spanish Ministry of Science and Innovation (PID2020-115813RA-I00), and a project of the Fondo Europeo de Desarrollo Regional (FEDER) and the Consejería de Transformación Económica, Industria, Conocimiento y Universidades of the Junta de Andalucía (FEDER Andalucía 2014-2020 Objetivo temático ‘01 – Refuerzo de la investigación, el desarrollo tecnológico y la innovación’) associated with the research project P20_00879 (ANDABIOMA). J.E.S. is a CIFAR fellow in the Fungal Kingdom: Threats and Opportunities program. B.C.F. acknowledges support from the Australian Research Council Discovery Project (DP220103430). Part of this work (proposal 10.46936/10.25585/60000791) was conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.Peer reviewe

    Coleine, C.

    No full text

    Antarctolichenia onofrii gen. nov. sp. nov. from Antarctic endolithic communities untangles the evolution of rock-inhabiting and lichenized fungi in Arthoniomycetes.

    Get PDF
    Microbial endolithic communities are the main and most widespread life forms in the coldest and hyper-arid desert of the McMurdo Dry Valleys and other ice-free areas across Victoria Land, Antarctica. There, the lichen-dominated communities are complex and self-supporting assemblages of phototrophic and heterotrophic microorganisms, including bacteria, chlorophytes, and both free-living and lichen-forming fungi living at the edge of their physiological adaptability. In particular, among the free-living fungi, microcolonial, melanized, and anamorphic species are highly recurrent, while a few species were sometimes found to be associated with algae. One of these fungi is of paramount importance for its peculiar traits, i.e., a yeast-like habitus, co-growing with algae and being difficult to propagate in pure culture. In the present study, this taxon is herein described as the new genus Antarctolichenia and its type species is A. onofrii, which represents a transitional group between the free-living and symbiotic lifestyle in Arthoniomycetes. The phylogenetic placement of Antarctolichenia was studied using three rDNA molecular markers and morphological characters were described. In this study, we also reappraise the evolution and the connections linking the lichenforming and rock-inhabiting lifestyles in the basal lineages of Arthoniomycetes (i.e., Lichenostigmatales) and Dothideomycetes
    corecore