3,332 research outputs found
Fabrication and Characterization of Compositionally-Graded Shape Memory Alloy Films
The miniaturization of engineering devices has created interest in new actuation methods capable of high power and high frequency responses. Shape memory alloy (SMA) thin films have exhibited one of the highest power densities of any material used in these actuation schemes. However, they currently require complex thermomechanical training in order to be actuated, which becomes more difficult as devices approach the microscale. Previous studies have indicated that SMA films with compositional gradients have the added feature of an intrinsic two-way shape memory effect (SME). In this work, a new method for processing and characterizing compositionally-graded transformable thin films is presented. Graded NiTi SMA films were processed using magnetron sputtering. Single and multilayer graded films were deposited onto bulk NiTi substrates and single crystal silicon substrates, respectively. Annealing the films naturally produced a compositional gradient across the film-substrate or film-film interface through diffusion modification. The films were directly characterized using a combination of atomic force microscopy (AFM), x-ray diffraction and Auger electron spectroscopy. The compositional gradient was indirectly characterized by measuring the variation in mechanical properties as a function of depth using nanoindentation. The similarity of the indentation response on graded films of varying thickness was used to estimate the width of the graded interface. The nanoindentation response was predicted using an analysis that accounted for the transformation effects occurring under the tip during loading and the variation of elastic modulus resulting from the compositional gradient. The recovery mechanisms of the graded films are compared with homogeneous films using a new nanoscale technique. An AFM integrated with a heating and cooling stage was used to observe the recovery of inelastic deformation caused through nanoindentation. The graded films exhibited a two-way SME with a reduced hysteresis, while the homogeneous films exhibited the classical one-way SME. The fabrication and characterization techniques developed in this work have the potential to be applied to general graded and multi-layer film systems
Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.
A detailed study of energy differences between the highest occupied and
lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and
water clusters is presented. Recent work questioning the applicability of
Kohn-Sham density-functional theory to proteins and large water clusters (E.
Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing
HOMO-LUMO gaps for these systems, which is generally attributed to the
treatment of exchange in the functional used. The present work shows that the
vanishing gap is, in fact, an electrostatic artefact of the method used to
prepare the system. Practical solutions for ensuring the gap is maintained when
the system size is increased are demonstrated. This work has important
implications for the use of large-scale density-functional theory in
biomolecular systems, particularly in the simulation of photoemission, optical
absorption and electronic transport, all of which depend critically on
differences between energies of molecular orbitals.Comment: 13 pages, 4 figure
Constraining the X-ray heating and reionization using 21-cm power spectra with Marginal Neural Ratio Estimation
Cosmic Dawn (CD) and Epoch of Reionization (EoR) are epochs of the Universe
which host invaluable information about the cosmology and astrophysics of X-ray
heating and hydrogen reionization. Radio interferometric observations of the
21-cm line at high redshifts have the potential to revolutionize our
understanding of the universe during this time. However, modeling the evolution
of these epochs is particularly challenging due to the complex interplay of
many physical processes. This makes it difficult to perform the conventional
statistical analysis using the likelihood-based Markov-Chain Monte Carlo (MCMC)
methods, which scales poorly with the dimensionality of the parameter space. In
this paper, we show how the Simulation-Based Inference (SBI) through Marginal
Neural Ratio Estimation (MNRE) provides a step towards evading these issues. We
use 21cmFAST to model the 21-cm power spectrum during CD-EoR with a
six-dimensional parameter space. With the expected thermal noise from the
Square Kilometre Array (SKA), we are able to accurately recover the posterior
distribution for the parameters of our model at a significantly lower
computational cost than the conventional likelihood-based methods. We further
show how the same training dataset can be utilized to investigate the
sensitivity of the model parameters over different redshifts. Our results
support that such efficient and scalable inference techniques enable us to
significantly extend the modeling complexity beyond what is currently
achievable with conventional MCMC methods.Comment: 15 pages, 9 figures. Accepted for publication in MNRA
Kinematics and Mass Profile of AWM 7
We have measured 492 redshifts (311 new) in the direction of the poor cluster
AWM~7 and have identified 179 cluster members (73 new). We use two independent
methods to derive a self-consistent mass profile, under the assumptions that
the absorption-line galaxies are virialized and that they trace an underlying
Navarro, Frenk & White (1997) dark matter profile: (1) we fit such an NFW
profile to the radial distribution of galaxy positions and to the velocity
dispersion profile; (2) we apply the virial mass estimator to the cluster. With
these assumptions, the two independent mass estimates agree to \sim 15% within
1.7 h^{-1} Mpc, the radial extent of our data; we find an enclosed mass \sim
(3+-0.5)\times 10^{14} h^{-1} M_\odot. The largest potential source of
systematic error is the inclusion of young emission-line galaxies in the mass
estimate.
We investigate the behavior of the surface term correction to the virial mass
estimator under several assumptions about the velocity anisotropy profile,
still within the context of the NFW model, and remark on the sensitivity of
derived mass profiles to outliers. We find that one must have data out to a
large radius in order to determine the mass robustly, and that the surface term
correction is unreliable at small radii.Comment: LaTeX, 5 tables, 7 figures, appeared as 2000 AJ 119 44; typos and Eq.
9 corrected; results are unaffecte
Dark Matter and Stellar Mass in the Luminous Regions of Disk Galaxies
We investigate the correlations among stellar mass (M_*), disk scale length
(R_d), and rotation velocity at 2.2 disk scale lengths (V_2.2) for a sample of
81 disk-dominated galaxies (disk/total >= 0.9) selected from the SDSS. We
measure V_2.2 from long-slit H-alpha rotation curves and infer M_* from galaxy
i-band luminosities (L_i) and g-r colors. We find logarithmic slopes of
2.60+/-0.13 and 3.05+/-0.12 for the L_i-V_2.2 and M_*-V_2.2 relations, somewhat
shallower than most previous studies, with intrinsic scatter of 0.13 dex and
0.16 dex. Our direct estimates of the total-to-stellar mass ratio within
2.2R_d, assuming a Kroupa IMF, yield a median ratio of 2.4 for M_*>10^10 Msun
and 4.4 for M_*=10^9-10^10 Msun, with large scatter at a given M_* and R_d. The
typical ratio of the rotation speed predicted for the stellar disk alone to the
observed rotation speed at 2.2R_d is ~0.65. The distribution of R_d at fixed
M_* is broad, but we find no correlation between disk size and the residual
from the M_*-V_2.2 relation, implying that this relation is an approximately
edge-on view of the disk galaxy fundamental plane. Independent of the assumed
IMF, this result implies that stellar disks do not, on average, dominate the
mass within 2.2R_d. We discuss our results in the context of infall models of
disk formation in cold dark matter halos. A model with a disk-to-halo mass
ratio m_d=0.05 provides a reasonable match to the R_d-M_* distribution for spin
parameters \lambda ranging from ~0.04-0.08, and it yields a reasonable match to
the mean M_*-V_2.2 relation. A model with m_d=0.1 predicts overly strong
correlations between disk size and M_*-V_2.2 residual. Explaining the wide
range of halo-to-disk mass ratios within 2.2R_d requires significant scatter in
m_d values, with systematically lower m_d for galaxies with lower .Comment: 18 pages, 2 tables, 7 figures, Accepted to ApJ, Table 1 updated,
otherwise minor change
Expanding the scope of density derived electrostatic and chemical charge partitioning to thousands of atoms
The density derived electrostatic and chemical (DDEC/c3) method is implemented into the onetep program to compute net atomic charges (NACs), as well as higher-order atomic multipole moments, of molecules, dense solids, nanoclusters, liquids, and biomolecules using linear-scaling density functional theory (DFT) in a distributed memory parallel computing environment. For a >1000 atom model of the oxygenated myoglobin protein, the DDEC/c3 net charge of the adsorbed oxygen molecule is approximately -1e (in agreement with the Weiss model) using a dynamical mean field theory treatment of the iron atom, but much smaller in magnitude when using the generalized gradient approximation. For GaAs semiconducting nanorods, the system dipole moment using the DDEC/c3 NACs is about 5% higher in magnitude than the dipole computed directly from the quantum mechanical electron density distribution, and the DDEC/c3 NACs reproduce the electrostatic potential to within approximately 0.1 V on the nanorodâs solvent-accessible surface. As examples of conducting materials, we study (i) a 55-atom Pt cluster with an adsorbed CO molecule and (ii) the dense solids Mo2C and Pd3V. Our results for solid Mo2C and Pd3V confirm the necessity of a constraint enforcing exponentially decaying electron density in the tails of buried atoms
Identifying a Two-State Hamiltonian in the Presence of Decoherence
Mapping the system evolution of a two-state system allows the determination
of the effective system Hamiltonian directly. We show how this can be achieved
even if the system is decohering appreciably over the observation time. A
method to include various decoherence models is given and the limits of this
technique are explored. This technique is applicable both to the problem of
calibrating a control Hamiltonian for quantum computing applications and for
precision experiments in two-state quantum systems. For simple models of
decoherence, this method can be applied even when the decoherence time is
comparable to the oscillation period of the system.Comment: 8 pages, 6 figures. Minor corrections, published versio
- âŚ