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A B S T R A C T 

Cosmic Dawn (CD) and Epoch of Reionization (EoR) are epochs of the Universe which host invaluable information about the 
cosmology and astrophysics of X-ray heating and hydrogen reionization. Radio interferometric observations of the 21-cm line 
at high redshifts have the potential to revolutionize our understanding of the Universe during this time. Ho we ver, modelling the 
evolution of these epochs is particularly challenging due to the complex interplay of many physical processes. This makes it 
difficult to perform the conventional statistical analysis using the likelihood-based Markov-Chain Monte Carlo ( MCMC ) methods, 
which scales poorly with the dimensionality of the parameter space. In this paper, we show how the Simulation-Based Inference 
through Marginal Neural Ratio Estimation ( MNRE ) provides a step towards evading these issues. We use 21cmFAST to model 
the 21-cm power spectrum during CD–EoR with a six-dimensional parameter space. With the expected thermal noise from 

the Square Kilometre Array, we are able to accurately reco v er the posterior distribution for the parameters of our model at a 
significantly lower computational cost than the conventional likelihood-based methods. We further show how the same training 

data set can be utilized to investigate the sensitivity of the model parameters o v er different redshifts. Our results support that such 

efficient and scalable inference techniques enable us to significantly extend the modelling complexity beyond what is currently 

achie v able with conventional MCMC methods. 

Key words: methods: data analysis – methods: statistical – dark ages, reionization, first stars. 
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 I N T RO D U C T I O N  

he Cosmic Dawn (CD) marks the formation of the first sources
f light, which produced high-energy X-ray and ultraviolet (UV) 
adiation. The radiation from these sources heated up the intergalactic 
edium (IGM) and initiated the Epoch of Reionization (EoR), 

uring which the IGM transitioned from a neutral to ionized state 
Barkana & Loeb 2001 ; Furlanetto, Oh & Briggs 2006a ; Pritchard &
oeb 2012 ). The astrophysics driving the heating and reionization 
rocess is still poorly understood, with large uncertainties on the 
roperties of the sources which dominantly contributed to these 
pochs (e.g. their star formation ef ficiency, ionizing ef ficiency, and 
heir X-ray luminosity). Observations of the high-redshift quasar 
pectra (Becker et al. 2001 ; Fan et al. 2003 ; Boera et al. 2019 ),
lectron scattering optical depth from the Cosmic Microwave Back- 
round (CMB) (Kaplinghat et al. 2003 ; Komatsu et al. 2011 ; Planck
ollaboration 2020 ), and the luminosity function and clustering 
roperties of Ly- α emitters (Jensen et al. 2012 ; Dijkstra 2014 ;
ouwens 2016 ; Gangolli et al. 2020 ) currently provide some con-
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traints on the astrophysical evolution of the CD and EoR. The 21-cm
ine associated with the spin-flip hyperfine transition of the hydrogen 
tom offers the most promising probe to study these eras. 

There are a large number of ongoing radio interferometric ex- 
eriments, including GMRT (Paciga et al. 2013 ), HERA (DeBoer 
t al. 2017 ), LOFAR (Ghara et al. 2020 ; Mertens et al. 2020 ), LWA
Eastwood et al. 2019 ), MWA (Barry et al. 2019 ; Li et al. 2019 ),
nd PAPER (Kolopanis et al. 2019 ). These experiments target the
etection of the 21-cm signal by quantifying its spatial fluctuations 
sing various Fourier statistics. We get increasingly interesting upper 
imits on the 21-cm power spectra from these experiments, some of
hich already enable us to rule out certain astrophysical models 

Ghara et al. 2020 ; 2021 ; Mondal et al. 2020 ; Greig et al. 2021 ;
bdurashidova et al. 2022 ; The HERA Collaboration 2022 ). The
pcoming Square Kilometre Array (SKA) (Koopmans et al. 2015 ; 
ellema et al. 2015 ) is expected to detect the 21-cm power spectrum

nd owing to its high sensitivity, it is likely that SKA will also be
ble to do the full tomography of the 21-cm signal. 

Once the signal is detected, the next goal would be to constrain
he parameters of the CD–EoR models to pin down the astrophysics
f the early Universe. Modelling the 21-cm signal from CD–EoR 

sing full radiative transfer simulations (Mellema et al. 2006 ; 
hara, Choudhury & Datta 2015 ) is computationally e xpensiv e
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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nd unfeasible to perform parameter inference. To o v ercome this
hallenge, various approximate and efficient semi-numerical models
re used to model the signal accurately at scales ≥1 Mpc (Zahn
t al. 2011 ). The traditional framework that is used to explore
arameter space is 21CMMC 

1 (Greig & Mesinger 2015 , 2017 ,
018 ; Park et al. 2019 ), which uses a semi-numerical framework
f the 21-cm signal simulator 21cmFAST 2 (Mesinger, Furlanetto &
en 2010 ) and embed this code in a Markov Chain Monte Carlo
 MCMC ) sampler. While 21CMMC is quite powerful in systematically
erforming parameter inference, it becomes computationally quite
 xpensiv e once we take into account the inhomogeneous X-ray
eating in the simulations. Alternatively, one can use analytical
odels of the 21-cm signal during CD–EoR (Qin et al. 2022 ; Mu ̃ noz

023 ). Quite generally, as the dimensionality of parameter space
ncreases, it takes longer for an MCMC , which samples the full joint
osterior, to converge. 
To circumnavigate these problems, machine learning techniques

ave been explored in various astrophysical and cosmological prob-
ems. In the context of 21-cm cosmology, one common approach is
o use emulators, which are trained using artificial neural networks
o replace actual simulations. This makes the likelihood e v aluations
nd, consequently, the parameter inference significantly faster (Kern
t al. 2017 ; Schmit & Pritchard 2017 ; Shimabukuro & Semelin 2017 ;
iwari et al. 2022 ). Ho we ver, the application of emulators is currently

imited to low-order summary statistics. The likelihood could become
ntractable for higher-order information such as the full 3D 21-cm
mages. For a tractable likelihood function, the traditional MCMC

lgorithm can be used to sample from the posterior distribution.
o we ver, when the likelihood itself is intractable, techniques such

s the Approximate Bayesian Computation ( ABC ) (Toni et al. 2008 )
an be used to sample from the approximate posterior. This approach
ses simulated data sets to a v oid the likelihood e v aluations; ho we ver,
t requires the introduction of summary statistics, which can signifi-
antly affect the quality of the approximation. 

These issues can be resolved by performing a Simulation-Based
nference ( SBI ) (Alsing et al. 2019 ; Papamakarios, Sterratt & Murray
019 ; Cranmer, Brehmer & Louppe 2020 ), where deep learning
lgorithms along with the ABC are used to estimate the posterior
istribution. In this work, we will apply the Marginal Neural Ratio
stimation ( MNRE ) algorithm (Miller et al. 2021 ) using SWYFT 3 

Miller et al. 2022 ). It directly estimates the marginal likelihood-
o-evidence ratios through neural networks, which makes it much

ore efficient than sampling the full joint posterior with an MCMC .
n addition, MNRE offers the flexibility to ignore large numbers of
uisance parameters, learning only the parameters of interest. This
as already been applied for the cosmological parameter inference
rom the CMB power spectra (Cole et al. 2022 ), reconstructing the
alo clustering and halo mass function from N -body simulations
Dimitriou, Weniger & Correa 2022 ), and gravitational lensing
nalyses (Coogan et al. 2022 ). 

In this work, we use this framework for the astrophysical parameter
nference with the 21-cm power spectrum from the CD–EoR. In a
ecent study, Zhao, Mao & Wandelt ( 2022b ) have performed the
eionization parameter inference from the EoR using the density
stimation likelihood free inference. Their analysis, ho we ver, was
imited to a 2D parameter space to model the 21-cm signal during
he EoR. Here, we extend the parameter space to six dimensions to
NRAS 525, 6097–6111 (2023) 
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lso include the parameters that go v ern the inhomogeneous X-ray
eating during the CD. In this case, a single 21-cm power spectrum
imulation is ∼5 times slower than the former 2D parameter space.
his implies that an MCMC for the six-dimensional parameter space
ould be even slower because of the typical exponential scaling of

he required samples as a function of the number of parameters.
oreo v er, such analysis with conventional methods while also co-

arying the cosmic seed for the forward models is pushed out of the
ealm of feasibility. 

Generating the simulated data set and performing the inference
ith MNRE are two independent processes within SWYFT . This allows
s to utilize the same training data set for various applications. To
ighlight this aspect of SWYFT , in a w ork ed-out example, we will let
he neural network determine which set of parameters are sensitive at
hich redshifts at no extra cost of 21-cm simulations. The distribution
f integration time over different redshifts can be considered a proxy
o determine which part of the data each parameter is most sensitive
o. This could be indicative of the possible degeneracies between
arameters for more complex astrophysical models of the 21-cm
ignal. 

This paper is organized as follows: In Section 2 , we briefly outline
he implementation of MNRE using SWYFT . In Section 3 , we describe
he 21-cm signal modelling and the parameters of interest. In Section
 , we present the posterior inference and investigate the sensitivity
f model parameters in different redshift ranges. We conclude in
ection 5 . Throughout this work, we assumed a � cold dark matter
niverse with cosmological parameters �m 

= 0.308, �b = 0.048,
� 

= 0.692, h = 0.678, and σ 8 = 0.81 (Planck Collaboration 2016a ).

 I MPLEMENTATI ON  O F  M N R E  USI NG  S W Y F T 

he probability distribution of model parameters θ for a given
bserv ation x follo ws from Bayes’ theorem 

 ( θ | x ) = 

p ( x | θ ) 

p ( x ) 
p ( θ ) , (1) 

here p( x | θ ) is the likelihood of the data x for given parameters
, p( θ ) is the prior probability distribution o v er the parameters, and
( x ) is the evidence of the data. 
In SBI , the information about the likelihood is implicitly accessed

ia a stochastic simulator, which maps from input parameters θ
o data x . We generate sample-parameter pairs from this simulator
 ( x 1 , θ1 ) ( x 2 , θ2 ) , · · · } . Here θ i is typically drawn from the prior, so
hese pairs are drawn from the joint distribution p( x , θ ). These pairs
re used to train a neural network to approximate the likelihood-
o-evidence ratio, a procedure known as Neural Ratio Estimation
Durkan, Murray & Papamakarios 2020 ; Hermans, Begy & Louppe
020a , b ). Following equation ( 1 ), this ratio (which we denote
( x , θ )) can be expressed as: 

( x , θ ) ≡ p( x | θ ) 

p( x ) 
= 

p( θ | x ) 
p( θ) 

= 

p( x , θ ) 

p( x ) p( θ) 
. (2) 

n other words, r( x , θ ) is equal to the ratio of the joint probability
ensity p( x , θ ) to the product of marginal probability densities
 ( x ) p ( θ). A binary classifier d φ( x , θ ) is then trained to distinguish
etween jointly drawn and marginally drawn pairs. Here φ denotes
he learnable parameters of the model, which are updated as the
odel is trained. 
More precisely, we introduce a binary label y to denote whether a

air was drawn jointly ( y = 1) or marginally ( y = 0). Strictly speaking,
 is a random variable. The output of the classifier (assuming it is
rained well) approximates the probability that a sample-parameter

https://github.com/BradGreig/21cmMC
https://github.com/21-cmfast/21cmFAST
https://github.com/undark-lab/swyft
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air ( x , θ ) is drawn jointly ( y = 1), i.e. 

 φ( x , θ ) ≈ p( y = 1 | x , θ ) 

= 

p ( x , θ | y = 1) p ( y = 1) 

p ( x , θ | y = 1) p ( y = 1) + p ( x , θ | y = 0) p ( y = 0) 

= 

p( x , θ ) 

p( x , θ ) + p( x ) p( θ) 
, 

here we assumed p( y = 0) = p( y = 1) = 

1 
2 . This learning prob-

em is associated with a binary cross-entropy loss function 

−
∫ [

p( x , θ ) ln d φ( x , θ ) + p ( x ) p ( θ) ln { 1 − d φ( x , θ ) } ] d x d θ , 

(3) 

hich is minimized using stochastic gradient descent to find the 
ptimal parameters φ of the network. The binary classifier is simply 
 dense neural network with a few hidden layers. Once the network
s trained, it results in 

 φ( x , θ ) ≈ p( x , θ ) 

p( x , θ ) + p ( x ) p ( θ) 
= 

r( x , θ ) 

r( x , θ ) + 1 
, (4) 

hich can be re-written as 

( x , θ ) ≈ d φ( x , θ ) 

d φ( x , θ ) − 1 
⇒ p( θ | x ) ≈ d φ( x , θ ) 

d φ( x , θ ) − 1 
p( θ) (5) 

o estimate the posterior probability distribution. This procedure can 
irectly estimate marginal posteriors by omitting model parameters 
rom the network’s input, a variant called MNRE . In this work, we use
NRE as implemented in the software package SWYFT (Miller et al. 
022 ). 

 SIMULATIONS  A N D  T R A I N I N G  DATA  

.1 21cmFAST 

o model the 21-cm signal and the underlying astrophysics of heating 
nd reionization, we use the publicly available semi-numerical 
ormalism, 21cmFAST (Mesinger et al. 2010 ). We first generate 
he initial density perturbation at z = 300 on a high-resolution 
024 3 grid. These perturbations are evolved using the Zel’dovich 
pproximation (Zel’dovich 1970 ) at later redshifts. To produce the 
onization map, the high-resolution density field is first mapped 
n a coarser grid. Then, 21cmFAST uses an excursion-set based 
ormalism (Furlanetto, Zaldarriaga & Hernquist 2004 ) to identify 
he ionized regions by comparing the number of ionizing photons 
ith the number of baryons within the spheres of decreasing radius
 min ≤ R ≤ R max . Here, R min depends on the spatial resolution of the
imulation, and R max is the maximum horizon for ionizing photons 
see Section 3.1.3 ). A grid point located at ( x , z) is considered fully
onized if for any R min ≤ R ≤ R max 

f coll ( x , z, R, M min ) ≥ 1 , (6) 

here ζ represents the ionizing efficiency (see Section 3.1.1 ) and 
 coll ( x , z, R , M min ) is the fraction of collapsed matter within a spherical
egion of radius R centred at ( x , z), which depends on the minimum
ass of the halo formation M min (Press & Schechter 1974 ; Sheth &
ormen 1999 ). The cells that do not satisfy equation ( 6 ) are assigned a
artial ionization fraction, ζ f coll ( x , z, R min ). The resulting ionization
ap is then converted into the 21-cm brightness temperature map 
sing (Furlanetto, Oh & Briggs ) 

T b = 27(1 − x H II ) ( 1 + δb ) 

(
�b h 

2 

0 . 023 

)(
0 . 15 

�m 

h 

2 

1 + z 

10 

)1 / 2 

×
(

T S − T CMB 

T CMB 

)[
∂ r v r 

(1 + z ) H ( z ) 

]
, (7) 

here x H II is the ionization fraction, δb is the baryon o v erdensity,
m 

is the matter density, �b is the baryon density, h is the
ubble parameter, T S and T CMB are the spin temperature and CMB

emperature, respectively, and the last term takes into account the 
elocity gradient along the line of sight. 

The spin temperature T S can couple to (i) the CMB temperature
 CMB , in which case δT b = 0, (ii) the kinetic gas temperature T K 

hrough collisional coupling, and (iii) the Ly- α colour temperature 
 C through the Wouthuysen–Field coupling (Wouthuysen 1952 ), 
here T C ≈ T K . To track the evolution of the gas temperature,
1cmFAST simulates the inhomogeneous heating of the IGM by 
-rays by integrating the angle-averaged specific X-ray emissivity 

 εX ) along the lightcone for each cell. The specific X-ray emissivity
s given as (Mesinger et al. 2010 ; Greig & Mesinger 2017 ) 

X ( x , E, z) = 

L X 

SFR 

[
ρcrit, 0 �b f � (1 + δnl ) 

d f coll ( z) 

d t 

]
, (8) 

here ρcrit,0 is the current critical density, f � is the fraction of baryons
n stars, δnl is the evolved density. The term enclosed in square
rackets is the star formation rate (SFR) density along the lightcone.
 X is the specific X-ray luminosity which is assumed to follow a
ower law, L X ∝ E 

−αX . The photons below an energy threshold
 0 are absorbed by the interstellar medium. The X-ray efficiency 

s normalized by quantifying an integrated soft-band ( < 2 keV)
uminosity per SFR 

L X < 2 keV 

SFR 

= 

∫ 2 keV 

E 0 

(
L X 

SFR 

)
d E . (9) 

The semi-numerical model adopted in this work consists of six 
strophysical parameters which go v ern the evolution of the 21-
m signal during the CD–EoR. We briefly describe each of these
arameters and the adopted priors below. 

.1.1 Ionizing efficiency, ( ζ ) 

he UV ionizing efficiency of high-redshift galaxies can be expressed 
n terms of various factors as (Barkana & Loeb 2001 ; Mesinger et al.
010 ) 

= 30 

(
f esc 

30 

)(
f � 

0 . 05 

)(
N γ /b 

4000 

)(
2 

1 + n rec 

)
, (10) 

here f esc is the fraction of ionizing photons that escape into the IGM,
 � is the fraction of galactic gas in stars, N γ / b is the number of ionizing
hotons produced per baryon in stars, and n rec is the average number
f times a hydrogen atom recombines. We assume a single population
f efficient star-forming galaxies (a constant ionizing efficiency for 
ll the galaxies) hosted by haloes with a sufficient mass. 

The timing and duration of reionization strongly depend on ζ . 
arge values of ζ will speed up the ionization process if we keep the
ther parameters fixed. We adopt a flat prior ζ ∈ (10, 100), although
n extended range with the upper limit of ζ = 250 has also been
tudied in Greig & Mesinger ( 2017 ) to explore the models where the
oR is driven by rare, very bright galaxies. 
MNRAS 525, 6097–6111 (2023) 



6100 A. Saxena et al. 

M

3

T  

d  

m

M

w
+  

t  

w  

d  

i  

w  

d
 

t  

l  

o  

F

3

T  

i  

p  

t  

m
 

i  

t  

o  

i  

M

3

T  

t  

X  

i
 

i  

W  

m  

e  

(

3
g

T  

t  

t  

i  

r  

t
 

h  

Table 1. Observation parameters for 
SKA1 low configuration used in this 
work to simulate the thermal noise. 

Parameter Value 

N ant 512 
ν 195.3 kHz 
 t 10 s 

t 
day 
obs 6 h 
t tot 
obs 1000 h 
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.1.2 Minimum virial temperature of haloes, T min 
vir 

he minimum threshold for a halo to host a star-forming galaxy is
efined in terms of its virial temperature, T min 

vir . It is related to the
ass of the halo (Barkana & Loeb 2001 ) as: 

 

min 
vir = 

10 8 

h 

[
0 . 6 

μ

10 

1 + z 

T min 
vir 

1 . 98 × 10 4 

]3 / 2 [
�m 

�z 
m 

 c 

18 π2 

]−1 / 2 

M 
, 

(11) 

here μ is the mean molecular weight, �z 
m 

= �m 

( z), and  c = 18 π2 

 82 d − 39 d 2 where d = �z 
m 

− 1. The choice of T min 
vir determines

he cut-off in the UV luminosity function. Galaxies that are hosted
ithin a halo with T vir < T min 

vir have no contribution to star formation
ue to internal feedback processes. We note that T min 

vir has a significant
mpact on both the EoR and the Epoch of Heating (EoH) because,
ithin the 21cmFAST framework, the physics of star formation
rives both the X-ray heating and ionization fields. 
We adopt a flat prior on T min 

vir ∈ (10 4 , 10 6 ) K. The minimum
emperature required for efficient atomic cooling defines our lower
imit of T min 

vir = 10 4 K, and the upper limit is consistent with the
bservation of Lyman break galaxies at high redshifts (Kuhlen &
aucher-Gigu ̀ere 2012 ; Barone-Nugent et al. 2014 ). 

.1.3 Mean free path of the ionizing photons, R mfp 

he physical size of the ionized region is go v erned by the distance
onizing photons propagate through the IGM, which depends on the
opulation of the photon absorption systems where recombinations
ake place. To take into account this effect, we define R mfp as the

aximum horizon for the ionizing photons. 
It has been shown by Greig & Mesinger ( 2017 ) that this parameter

s only sensitive during the later stages of reionization when the
ypical size of the H II regions approaches R mfp . We use a flat prior
n R mfp ∈ (5, 25) cMpc similar to Greig & Mesinger ( 2015 ), which
s consistent with the sub-grid recombination model of Sobacchi &

esinger ( 2014 ). 

.1.4 Integrated soft-band luminosity, L X < 2 keV / SFR 

he total integrated soft-band ( < 2 keV) luminosity per SFR escaping
he host galaxies ( L X < 2 keV / SFR ) controls the efficiency with which
-rays heat the IGM. It decides the timing and duration of the EoH

n a manner similar to ζ for the EoR. 
For sufficiently large values of L X < 2 keV / SFR , the X-rays can also

onize the IGM at ∼ 10 − 20 per cent level, in addition to heating.
e use a flat prior on log 10 ( L X < 2 keV / SFR ) ∈ (38 , 42). This range is
oti v ated by population synthesis models at high redshifts (Fragos

t al. 2013 ) and the observations of the local population of galaxies
Mineo, Gilfanov & Sunyaev 2012 ; Sazonov & Khabibullin 2017 ). 

.1.5 X-ray energy threshold for self-absorption by the host 
alaxies, E 0 

he soft X-rays produced by the host galaxies can be absorbed by
he interstellar medium, in which case they can no longer contribute
o the heating of the IGM. From the simulations of high z galaxies,
t has been shown by Das et al. ( 2017 ) that the attenuation of the X-
ay profile can be approximated by a step function below an energy
hreshold E 0 . 

The small values of E 0 lead to very efficient and inhomogeneous
eating. It has been shown by Pacucci et al. ( 2014 ) that the amplitude
NRAS 525, 6097–6111 (2023) 
f the power spectra for such softer spectral energy distributions
SEDs) is larger by up to an order of magnitude. We adopt a flat prior
n E 0 ∈ (0.1, 1.5) keV. 

.1.6 X-r ay spectr al index, αX 

he spectral index governs the spectrum that emerges from the X-ray
ources and depends on the dominant physical process emitting the
-ray photons. We take a flat prior on αX ∈ ( − 0.5, 2.5) similar

o Greig & Mesinger ( 2017 ) to take into account various relevant
-ray SEDs such as high-mass X-ray binaries, mini-quasars, host

nterstellar medium, supernovae remnants. 
Our simulations are performed within a [250 cMpc] 3 box on a

128] 3 grid. The training data is composed of 20 000 power spectra
amples e v aluated at ten dif ferent redshifts in range (25, 6). These
amples are drawn randomly from the priors. We use 80 per cent of
he samples for training, 10 per cent for validation, and 10 per cent
or the test data set. We also vary the cosmic seed in our forward
odels. The impact of the size of the training data is investigated in
ppendix D . 

.2 Telescope noise profile 

o simulate the thermal noise, we first estimate the uv co v erage
or SKA1 low, assuming 1000 h of observations. Thermal noise
s simulated using ps eor 4 by creating a system equi v alent flux
ensity of 2500 Jy at the central frequency of the observation.
he current configuration of SKA1-Low has 512 stations, 224 of
hich are placed randomly in a circular core of radius 350 m. The

emaining 288 stations are distributed among 36 clusters in three
piral arms extending up to a radius of 35 km from the central
ore. We integrate for 10 s per visibility and observe for 6 h each
ay with a frequency resolution of 195.3 kHz. These parameters
re tabulated in Table 1 . This results in the thermal noise ( σ therm 

).
ote that in Greig & Mesinger ( 2017 ), the authors also include a
0 per cent modelling uncertainty on the sampled power spectra to
ake into account the differences with various semi-numerical and
adiative transfer simulations. This can be easily incorporated with-
ut running any additional 21-cm signal simulations in our analysis.
he impact of including the modelling uncertainty is discussed in
ppendix C . 

.3 Mock obser v ation 

o form our mock observation, we consider a model with
 ζ, log 10 ( T 

min 
vir ) , R mfp , log 10 ( L X ) , E 0 , αX } = { 30, 4.70, 15, 40.5, 0.5,

 } . It corresponds to the FAINT GALAXIES model from Mesinger,

https://gitlab.com/flomertens/ps_eor
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Figure 1. The cosmological (black) and noisy (orange) mock power spectrum for the FAINT GALAXIES model at different redshifts, where k ∈ (0.1, 0.8) 
Mpc −1 . The shaded region represents the power spectrum uncertainty level. 

Figure 2. Illustration of the network architecture. Input data x and parameters θ are mapped to the marginal parameter combinations. The individual ratio 
estimators are trained with an MLP. The outputs are estimated ratios r( x , θ) for the marginal posteriors of interest. 
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reig & Sobacchi ( 2016 ) and Greig & Mesinger ( 2017 ) in which
eionization is driven by numerous sources with low ionizing 
fficiency. This set of parameter values results in the reionization 
istory and the Thomson optical depth τ consistent with Planck data 
Planck Collaboration 2016b ). The mock observation is simulated 
ithin a [500 cMpc] 3 box on a [256] 3 grid. 
In Fig. 1 , we show the cosmological 21-cm power spectra 

black line) from our mock observation at different redshifts. The 
haded region represents the 21-cm power spectrum uncertainty. 
e then draw a random realization from the normal distribution 
N (0 , σ 2 

therm 

( k, z)), and add it to the cosmological 21-cm power
pectrum to form the noisy mock observation (orange line). We 
estrict our analysis to the k -modes in the range k ∈ (0.1, 0.8)

pc −1 to a v oid the impact of foreground contamination on large
cales and thermal noise on small scales (Greig & Mesinger 
015 , 2017 ). 
t  
 RESULTS  

n this section, we discuss the application of SWYFT to obtain the
osterior probability distributions for our six-dimensional 21-cm 

ower spectra model for the simulated mock observation and explore 
he constraints on different astrophysical parameters as a function of 
edshift in Section 4.1 . In Section 4.2 , we show how the distribution
f integration time over different redshifts can be used as a proxy
o find which part of the data each model parameter is sensitive to.
hese examples emphasize the flexibility of our framework. 

.1 Posterior inference with SWYFT 

o obtain the posterior distribution from MNRE , we first concatenate 
he power spectra from different redshifts into a 1D array. This is
hen fed as the input for the multi-layer perceptron (MLP) with three
MNRAS 525, 6097–6111 (2023) 
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Figure 3. Reco v ered 1D and 2D marginals for the six-dimensional FAINT GALAXIES model assuming 1000 h observation from SKA. The dashed lines 
denote the input parameters { ζ, log 10 ( T 

min 
vir ) , R mfp , log 10 ( L X ) , E 0 , αX } = { 30, 4.70, 15, 40.5, 0.5, 1 } . Inset: Reco v ered 1 σ and 2 σ constraints on the reionization 

history. The dashed line shows the evolution of χ̄H I ( z) for the fiducial model. 
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ayers, each containing 256 neurons. The network is trained with

 batch size of 64, and we decay the initial learning rate of 10 −3 

y 0.95 after every epoch. The output of the trained network is the
stimated ratios for the parameters of interest. In Fig. 2 , we show a
chematic diagram of the network architecture. Once the network is
rained, the ratio estimator allows for very fast MCMC sampling from
he approximate posterior. 

In Fig. 3 , we present the posteriors on the astrophysical parameters
btained from SWYFT for the FAINT GALAXIES model assuming
000 h observation from the SKA. The diagonal panels show the
NRAS 525, 6097–6111 (2023) 
D marginalized posterior for each parameter, and 2D marginals are
hown in the lower off-diagonal panels. The dashed lines represent
he true value of the parameters. The inferred model parameters
nd the corresponding 16th and 84th percentiles are tabulated in
able 2 . 
Consistent with Greig & Mesinger ( 2017 ), we are able to tightly

onstrain all our model parameters except αX , which has a relatively
mall impact on the amplitude of the 21-cm power spectra. The small
egeneracies between ζ − log 10 ( T 

min 
vir ) and E 0 − αX are in agreement

ith Greig & Mesinger ( 2017 ), and the findings of Ewall-Wice et al.
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Table 2. The inferred parameter values and the associated 16th and 84th percentiles for the posteriors from (i) z EoH + z EoR shown in 
Fig. 3 , and (ii) z EoH and z EoR shown in Fig. 4 . 

Model ζ log 10 ( T 
min 

vir ) R mfp log 10 ( L X ) E 0 αX 

z EoH + z EoR 30 . 25 + 2 . 70 
−1 . 80 4 . 70 + 0 . 03 

−0 . 02 14 . 65 + 0 . 56 
−0 . 56 40 . 49 + 0 . 04 

−0 . 06 0 . 50 + 0 . 03 
−0 . 03 0 . 84 + 0 . 39 

−0 . 39 

z EoH 22 . 15 + 5 . 40 
−5 . 40 4 . 70 + 0 . 03 

−0 . 02 – 40 . 49 + 0 . 06 
−0 . 06 0 . 49 + 0 . 03 

−0 . 04 0 . 68 + 0 . 51 
−0 . 45 

z EoR 29 . 35 + 2 . 70 
−3 . 60 4 . 66 + 0 . 04 

−0 . 05 14 . 65 + 0 . 56 
−0 . 56 40 . 47 + 0 . 12 

−0 . 12 0 . 32 + 0 . 07 
−0 . 10 –
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 2016 ) and Kern et al. ( 2017 ). In the top right panel of Fig. 3 , we
how the 1 σ and 2 σ constraints on the mean neutral fraction ( ̄χHI )
s a function of redshift z, where the dashed line represents the true
onization history of the model. For this analysis, we use χ̄H I ( z) in
lace of parameters θ of the network architecture shown in Fig. 2 .
e find tight constraints on the ionization history from the SKA. 
Ne xt, we inv estigate the sensitivity of our model parameters 

uring different redshifts. We perform the parameter inference by 
ividing the entire redshift range into two bins: (i) z EoH ∈ (25, 12),
hich corresponds to the X-ray heating, and (ii) z EoR ∈ (11, 6) that

orresponds to reionization. Note that this analysis does not require 
n y e xtra 21-cm power spectra simulations. The same training data
an be re-used with a minimal change in the network’s architecture, 
hich is not possible for an MCMC analysis. In this case, the MLP

akes the power spectra from z EoH (or z EoR ) as the input and estimates
he ratios for the parameters of interest. 

In Fig. 4 , we show the resulting 1D and 2D marginal posteriors
rom z EoH (red) and z EoR (blue). The inferred parameters and the 
orresponding 16th and 84th percentiles are tabulated in Table 2 . We
nd that ζ , log 10 ( T 

min 
vir ) and R mfp are well constrained with the 21-cm

ower spectra from z EoR , which is expected as these parameters play
 significant role during reionization. On the other hand, log 10 ( T 

min 
vir ),

og 10 ( L X ) and E 0 are constrained with the power spectra from z EoH .
ote that the minimum virial temperature of a halo to host the star-

orming galaxies, T min 
vir can be well constrained with either redshift 

in because, within 21cmFAST , the galaxies that host the ionizing 
ources are the same galaxies that are responsible for X-ray heating. 
o, this parameter impacts both the EoH and EoR. 
In the top right panel of the Fig. 4 , we show the constraints on

eionization history from the 21-cm power spectra during z EoH (red) 
nd z EoR (blue). We find that from the 21-cm power spectra at z EoH ,
e can constrain the neutral fraction reasonably well at z ≥ 12 ( z EoH ),
ut it does not provide tight constraints during the intermediate and 
ate stages of reionization. Ho we ver, with the 21-cm power spectra
t z EoR , we can infer the entire reionization history of the FAINT

ALAXIES model. The constraints from the 21-cm power spectra 
t z EoR on the neutral fraction at z EoH comes from the fact that
hroughout our models, the neutral fraction χ̄H I ≈ 1 at z ≥ 12. 

.2 Information from different redshifts 

n order to study the information content from different redshifts, we 
onsider a toy scenario where we use the distribution of integration 
ime o v er different redshifts as a proxy to find which part of the
ata each parameter is most sensitive to. So far, in our analysis, we
onsidered the distribution of integration time to be uniform over 
edshifts. Ho we ver, for a fixed total integration time, this distribution
an be optimized since the thermal noise level at redshift z depends
n the integration time t z allocated for that redshift. 
The optimization is achieved via gradient descent by maximizing 

he information the network learns about any given parameter from 

ifferent redshifts. For a fixed total integration time T tot , we optimize
he integration time for each redshift t z , such that T tot = 

∑ 

t z . We
arametrize t z as: 

 z = ( T tot × sof tmax ( v ) ) z , (12) 

here v is a vector that corresponds to the number of redshift bins.
arger components in v correspond to more integration time for that 

edshift bin. Next, we consider v to be one of the network parameters
hat is optimized during the training. As we train the classifier (MLP)
o learn the 1D posterior for any given parameter, at the same time,
t learns the optimal way of distributing the integration time for that
arameter. We further obtain the uncertainties on the optimal time 
istribution through Monte Carlo Dropout ( MCD ) (Gal & Ghahramani 
016 ). 
In Fig. 5 , we show the results from this information content

nalysis. For each parameter, the top panel shows the uniform time
istribution (orange dashed line) and the optimized time distribution 
violins), where the uncertainties follow from the MCD . The bottom
anel shows the histogram of the 1 σ uncertainty interval on the
osterior distribution of each parameter from 500 different mock 
bservations drawn randomly from the test data set assuming the 
niform (orange) and optimized (black) time distribution. 
We find that the parameters log 10 ( T 

min 
vir ), log 10 ( L X ), E 0 , and αX 

re assigned a larger integration time at high redshifts z ≥ 12 after
he optimization of the network. This implies that the information 
or these parameters is contained at high redshifts. These findings 
re consistent with the posteriors from z EoH and z EoR shown in
ig. 4 . On the contrary, for the mean free path R mfp , the network
llocates large integration time at redshift z = 9. This is also
n agreement with the analysis in Fig. 4 , where we found a flat
osterior on R mfp from z EoH , and the constraints only came from
 EoR . For each parameter, the histogram of the 1 σ uncertainty interval
rom the optimized integration time distribution tends to wards lo wer
 σ uncertainty on the posterior distribution, which indicates that 
he network learns more information about a given parameter from 

he optimized time distribution in comparison to the uniform time 
istribution. 

 SUMMARY  

n this paper, we performed Simulation-Based Inference through an 
NRE algorithm, SWYFT , to constrain the astrophysical parameters 

hat go v ern the X-ray heating and reionization during the CD–EoR.
e used 21cmFAST to model the 21-cm power spectra during 
D–EoR with a six-dimensional astrophysical parameter space. 
e showed that this framework is significantly more efficient as 

t directly learns the marginal posteriors of interest through neural 
etworks than the conventional likelihood-based methods such as 
CMC , which samples the full joint posterior. 
With the training data composed of 20 000 21-cm power spectra

imulations and the expected thermal noise level from the SKA, 
e were able to constrain the parameters of our model. The 1D

nd 2D marginal posteriors obtained through MNRE look consistent 
MNRAS 525, 6097–6111 (2023) 
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Figure 4. Reco v ered 1D and 2D marginals from z EoH (red) and z EoR (blue) for the six-dimensional FAINT GALAXIES model assuming 1000 h observation 
with SKA. The dashed lines denote the input parameters { ζ, log 10 ( T 

min 
vir ) , R mfp , log 10 ( L X ) , E 0 , αX } = { 30, 4.70, 15, 40.5, 0.5, 1 } . The inset plot shows the 

reco v ered reionization history from the 21-cm power spectra during z EoH (red) and z EoR (blue). 
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ith the earlier studies performed with an MCMC , which required an
rder of magnitude more samples to converge. We further checked
he statistical consistency of the trained network by e v aluating the
ominal and empirical expected coverage probabilities. 
Within SWYFT , generating the training data set and MNRE are two

ndependent processes. This feature gives us the flexibility to reuse
he simulations and utilize the same training data set for various
pplications. To demonstrate this aspect of SWYFT , we investigated
he sensitivity of different parameters o v er two different redshift
anges that correspond to the EoH ( z EoH ) and EoR ( z EoR ). We obtained
he posterior probability distribution on the model parameters from
NRAS 525, 6097–6111 (2023) 
 EoH and z EoR at no extra cost of 21-cm power spectra simulation. An
CMC analysis in this scenario would otherwise require a new chain,

nd the simulations can not be used efficiently. 
We further studied the information content for each parameter from

ifferent redshifts by considering a toy scenario where we consider
he distribution of the integration time to be part of the network
arameters, which is optimized during the training. We found the
ptimized time distribution to be consistent with the posterior
robability distribution of model parameters from z EoH and z EoR .
his could be used as an indicator of the possible degeneracies for
ore complex astrophysical 21-cm signal models without running



Inference from 21-cm P ( k ) through MNRE 6105 

Figure 5. Result of integration time optimization as a proxy for information content for ζ , log 10 ( T 
min 

vir ), R mfp , log 10 ( L X ), E 0 , αX . Top panel: Violins represent 
the optimized time distribution, and the orange line shows the initial time distribution. Bottom panel: The histogram of 1 σ uncertainty interval on the posterior 
distribution of each parameter for 500 different mock observations drawn randomly from the test data set assuming a uniform (orange) and optimized (black) 
time distribution. 
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dditional simulations. This establishes that with such efficient and 
calable inference techniques, one can increase the complexity of the 
1-cm model even further, which could otherwise be impractical for 
he likelihood-based approaches. 

While our analysis has shown that MNRE is a powerful framework 
o analyse the 21-cm power spectrum, in reality, the 21-cm signal 
uring CD–EoR is highly non-Gaussian (Shimabukuro et al. 2016 ; 
ajumdar et al. 2018 ; Watkinson et al. 2018 ), so the 21-cm power

pectrum is probably not the most optimal summary statistics to use 
or parameter inference. In future work, we plan to explore the higher- 
rder summary statistics such as the 21-cm bispectrum (Tiwari et al. 
022 ), the morphology of the ionized regions (Gazagnes, Koop- 
ans & Wilkinson 2021 ; Kapahtia et al. 2021 ) and convolutional
eural networks on the 21-cm tomographic images (Gillet et al. 
019 ; Zhao et al. 2022a ) for parameter inference through MNRE . 
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Figure A1. Empirical expected coverage probability (1 − ˆ α) of the trained network as a function of confidence level (1 − α) for all 1D and 2D marginal 
posteriors. In case of a perfect co v erage, the purple line coincides with the green dashed line. 
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PPENDIX  A :  C OV E R AG E  O F  T H E  N E T WO R K  

ith the trained network d φ( x , θ ), we can quickly estimate the
osterior p( θ | x ) for any mock observation x . This allows us to test
he statistical properties of the Bayesian inference. We e v aluate the
ominal and empirical e xpected co v erage probabilities to check the
onsistency of the trained network. Given a set of n i.i.d. samples
 x i , θ∗

i ) ∼ p( x , θ ), the empirical expected coverage probability of the
1 − α) highest posterior density regions (HPDR) for the posterior 
stimator ˆ p ( θ | x ) is given as (Hermans et al. 2022 ) 
 − ˆ α = 

1 

n 

n ∑ 

i= 1 

1 

[
θ∗

i ∈ � ˆ p ( θ | x i ) (1 − α) 
]

, (A1) 

here � ˆ p ( θ | x i ) (1 − α) function gives the (1 − α) HPDR of ˆ p ( θ | x )
or the mock data x i with the ground truth θ∗

i . We then compare it
ith the nominal expected coverage probability, which is equal to 

he confidence level (1 − α). For an estimator with perfect coverage,
he empirical co v erage probability is equal to the nominal co v erage
robability, so when we randomly generate n samples ( x i , θ∗

i ) ∼
MNRAS 525, 6097–6111 (2023) 
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( x , θ ), the ground truth θ∗
i lies outside the (1 − α) HPDR in α of

he cases (Cole et al. 2022 ). 
We re-parametrize α ( ̂  α) in terms of a new variable z which is

 − α/2 (1 − ˆ α/ 2) quantile of the standard normal distribution.
his means that the (1, 2, 3) σ regions correspond to z = (1, 2,
) with (1 − α) = (0.6827, 0.9545, 0.9997). The uncertainties on
he empirical expected coverage probability follow from the finite
umber of samples ( n ) and are estimated using the Jeffreys interval
Cole et al. 2022 ). In Fig. A1 , we show the empirical expected
o v erage probability of the network as a function of confidence levels
or all 1D and 2D marginal posteriors. We find that in all cases, they
atch to good precision. 

PPENDIX  B:  C O M PA R I S O N  WITH  2 1 C M M C  

n this section, we compare the posteriors obtained from MNRE with
n MCMC sampling-based method, 21CMMC . As sampling our joint
NRAS 525, 6097–6111 (2023) 

igure B1. Comparison of the 1D and 2D marginal posteriors estimated from 

1CMMC (red) with MNRE (blue) for the FAINT GALAXIES reionization 
odel ( ζ, log 10 ( T 

min 
vir )) = (30, 4.70). 

A
M

I  

s  

c  

e  

t  

u

σ

I  

a  

w  

t  

w  

m  

f  

a  

T  

e  

n  

a

cadem
ic.oup.com

/m
nras/article/525/4/6097/7261731 by U

niversiteit van Am
sterdam

 user on 15 January 2024
ix-dimensional parameter space with the likelihood-based approach
s computationally very demanding, we shrink our parameter space
o two dimensions, including ζ and log 10 ( T 

min 
vir ). We keep the other

arameters fixed to { R mfp , log 10 ( L X ), E 0 , αX } = { 15, 40.5, 0.5, 1 }
nd target redshifts z = 10, 9, and 8. 

To set up 21CMMC , we use 48 random w alk ers with 2000 iterations
ach, generating ∼10 5 samples. On the other hand, the training data
or MNRE consists of 10 4 simulations. The mock observation with
 ζ, log 10 ( T 

min 
vir )) = (30, 4.70) is generated using a different realization

f the density field from the one used in sampling. In Fig. B1 , we
how the posteriors obtained from 21CMMC (red) and MNRE (blue).
he 1D and 2D marginal posteriors obtained from MNRE are in good
greement with 21CMMC at a significantly reduced computational
ost. These results are consistent with the findings of Zhao et al.
 2022b ). 

PPENDI X  C :  I M PAC T  O F  I N C L U D I N G  

ODELLI NG  U N C E RTA I N T Y  

n this section, in addition to thermal noise, we consider an additional
ource of uncertainty due to the EoR modelling. We assume a
onstant multiplicative error of 10 per cent to take into account the
rrors in semi-numerical approximations. This is added in quadrature
o the thermal noise uncertainty to get the 21-cm power spectrum
ncertainty 

( k i , z) = 

√ 

σ 2 
therm 

( k i , z) + σ 2 
mod ( k i , z) . (C1) 

n Fig. C1 , we show the reco v ered 1D and 2D marginal posteriors
ssuming a 10 per cent modelling uncertainty (red), and compare it
ith the constraints derived by excluding this error (green). We find

hat including the modelling uncertainty results in wider posteriors,
hich is consistent with Greig & Mesinger ( 2015 ). The inferred
odel parameters and the corresponding 16th and 84th percentiles

or both scenarios are tabulated in Table C1 . We note that this
nalysis does not require re-running any 21-cm signal simulations.
he existing training data with the modified noise model given by
quation ( C1 ), which is sampled on-the-fly during the training of the
etwork, can be re-used. This e xample demonstrates the fle xibility
nd efficiency of our approach. 
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Figure C1. Reco v ered 1D and 2D marginals with (red) and without (green) including 10 per cent modelling uncertainty on the 21-cm power spectra. The dashed 
lines denote the input parameters { ζ, log 10 ( T 

min 
vir ) , R mfp , log 10 ( L X ) , E 0 , αX } = { 30, 4.70, 15, 40.5, 0.5, 1 } . The inset plot shows the reco v ered reionization 

history. 

Table C1. The inferred parameter values and the associated 16th and 84th percentiles for the posteriors shown in Fig. C1 
with and without including 10 per cent modelling uncertainty. 

Model ζ log 10 ( T 
min 

vir ) R mfp log 10 ( L X ) E 0 αX 

w/o 10 per cent mod. 
uncert. 

30 . 25 + 2 . 70 
−1 . 80 4 . 70 + 0 . 03 

−0 . 02 14 . 65 + 0 . 56 
−0 . 56 40 . 49 + 0 . 04 

−0 . 06 0 . 50 + 0 . 03 
−0 . 03 0 . 84 + 0 . 39 

−0 . 39 

w 10 per cent mod. 
uncert. 

31 . 15 + 2 . 70 
−2 . 70 4 . 70 + 0 . 02 

−0 . 03 14 . 65 + 0 . 84 
−0 . 84 40 . 51 + 0 . 06 

−0 . 06 0 . 50 + 0 . 04 
−0 . 05 0 . 69 + 0 . 69 

−0 . 78 
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PPENDIX  D :  I M PAC T  O F  T H E  SIZE  O F  

R A I N I N G  SET  O N  T H E  POSTERIORS  

n this section, we investigate the size of the training set needed to
chieve the convergence for MNRE . Our default training set contains
 × 10 4 ( n samp ) 21-cm power spectra samples. We re-train the neural
atio estimator with a subset of training set with n samp = 10 4 to
stimate the posterior distribution of model parameters. 

In Fig. D1 , we present and compare the reco v ered 1D and
D marginal posteriors generated from n samp = 2 × 10 4 (green)
NRAS 525, 6097–6111 (2023) 

igure D1. Reco v ered 1D and 2D marginals with the number of samples in the tra
enote the input parameters { ζ, log 10 ( T 

min 
vir ) , R mfp , log 10 ( L X ) , E 0 , αX } = { 30, 4.7
nd 10 4 (red) samples. The inset plot shows the 2 σ constraints
n reionization history. The inferred model parameters and the
orresponding 16th and 84th percentiles for both scenarios are
abulated in Table D1 . The posteriors on model parameters for
oth cases match to excellent precision, which indicates the con-
ergence of MNRE . Therefore, ∼10 4 simulations are sufficient to
reserv e accurac y in our SBI framew ork which mak es it 3 −10 times
ore computationally efficient than the classical methods of

nference. 
ining data n samp = 2 × 10 4 (green) and n samp = 10 4 (red). The dashed lines 
0, 15, 40.5, 0.5, 1 } . The inset plot shows the reco v ered reionization history. 
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Table D1. The inferred parameter values and the associated 16th and 84th percentiles for the posteriors shown in Fig. D1 . 

Model ζ log 10 ( T 
min 

vir ) R mfp log 10 ( L X ) E 0 αX 

n samp = 2 × 10 4 30 . 25 + 2 . 70 
−1 . 80 4 . 70 + 0 . 03 

−0 . 02 14 . 65 + 0 . 56 
−0 . 56 40 . 49 + 0 . 04 

−0 . 06 0 . 50 + 0 . 03 
−0 . 03 0 . 84 + 0 . 39 

−0 . 39 

n samp = 10 4 30 . 25 + 2 . 70 
−2 . 70 4 . 70 + 0 . 02 

−0 . 03 14 . 37 + 0 . 56 
−0 . 56 40 . 49 + 0 . 06 

−0 . 04 0 . 50 + 0 . 03 
−0 . 04 0 . 81 + 0 . 36 

−0 . 36 
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