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ABSTRACT

Cosmic Dawn (CD) and Epoch of Reionization (EoR) are epochs of the Universe which host invaluable information about the
cosmology and astrophysics of X-ray heating and hydrogen reionization. Radio interferometric observations of the 21-cm line
at high redshifts have the potential to revolutionize our understanding of the Universe during this time. However, modelling the
evolution of these epochs is particularly challenging due to the complex interplay of many physical processes. This makes it
difficult to perform the conventional statistical analysis using the likelihood-based Markov-Chain Monte Carlo (MCMC) methods,
which scales poorly with the dimensionality of the parameter space. In this paper, we show how the Simulation-Based Inference
through Marginal Neural Ratio Estimation (MNRE) provides a step towards evading these issues. We use 21cmFAST to model
the 21-cm power spectrum during CD-EoR with a six-dimensional parameter space. With the expected thermal noise from
the Square Kilometre Array, we are able to accurately recover the posterior distribution for the parameters of our model at a
significantly lower computational cost than the conventional likelihood-based methods. We further show how the same training
data set can be utilized to investigate the sensitivity of the model parameters over different redshifts. Our results support that such
efficient and scalable inference techniques enable us to significantly extend the modelling complexity beyond what is currently

achievable with conventional MCMC methods.

Key words: methods: data analysis — methods: statistical —dark ages, reionization, first stars.

1 INTRODUCTION

The Cosmic Dawn (CD) marks the formation of the first sources
of light, which produced high-energy X-ray and ultraviolet (UV)
radiation. The radiation from these sources heated up the intergalactic
medium (IGM) and initiated the Epoch of Reionization (EoR),
during which the IGM transitioned from a neutral to ionized state
(Barkana & Loeb 2001; Furlanetto, Oh & Briggs 2006a; Pritchard &
Loeb 2012). The astrophysics driving the heating and reionization
process is still poorly understood, with large uncertainties on the
properties of the sources which dominantly contributed to these
epochs (e.g. their star formation efficiency, ionizing efficiency, and
their X-ray luminosity). Observations of the high-redshift quasar
spectra (Becker et al. 2001; Fan et al. 2003; Boera et al. 2019),
electron scattering optical depth from the Cosmic Microwave Back-
ground (CMB) (Kaplinghat et al. 2003; Komatsu et al. 2011; Planck
Collaboration 2020), and the luminosity function and clustering
properties of Ly-o emitters (Jensen et al. 2012; Dijkstra 2014;
Bouwens 2016; Gangolli et al. 2020) currently provide some con-
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straints on the astrophysical evolution of the CD and EoR. The 21-cm
line associated with the spin-flip hyperfine transition of the hydrogen
atom offers the most promising probe to study these eras.

There are a large number of ongoing radio interferometric ex-
periments, including GMRT (Paciga et al. 2013), HERA (DeBoer
et al. 2017), LOFAR (Ghara et al. 2020; Mertens et al. 2020), LWA
(Eastwood et al. 2019), MWA (Barry et al. 2019; Li et al. 2019),
and PAPER (Kolopanis et al. 2019). These experiments target the
detection of the 21-cm signal by quantifying its spatial fluctuations
using various Fourier statistics. We get increasingly interesting upper
limits on the 21-cm power spectra from these experiments, some of
which already enable us to rule out certain astrophysical models
(Ghara et al. 2020; 2021; Mondal et al. 2020; Greig et al. 2021;
Abdurashidova et al. 2022; The HERA Collaboration 2022). The
upcoming Square Kilometre Array (SKA) (Koopmans et al. 2015;
Mellema et al. 2015) is expected to detect the 21-cm power spectrum
and owing to its high sensitivity, it is likely that SKA will also be
able to do the full tomography of the 21-cm signal.

Once the signal is detected, the next goal would be to constrain
the parameters of the CD-EoR models to pin down the astrophysics
of the early Universe. Modelling the 21-cm signal from CD-EoR
using full radiative transfer simulations (Mellema et al. 2006;
Ghara, Choudhury & Datta 2015) is computationally expensive

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
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and unfeasible to perform parameter inference. To overcome this
challenge, various approximate and efficient semi-numerical models
are used to model the signal accurately at scales >1Mpc (Zahn
et al. 2011). The traditional framework that is used to explore
parameter space is 21cMMC ! (Greig & Mesinger 2015, 2017,
2018; Park et al. 2019), which uses a semi-numerical framework
of the 21-cm signal simulator 21 cmFAST? (Mesinger, Furlanetto &
Cen 2010) and embed this code in a Markov Chain Monte Carlo
(McMC) sampler. While 21CcMMC is quite powerful in systematically
performing parameter inference, it becomes computationally quite
expensive once we take into account the inhomogeneous X-ray
heating in the simulations. Alternatively, one can use analytical
models of the 21-cm signal during CD-EoR (Qin et al. 2022; Mufioz
2023). Quite generally, as the dimensionality of parameter space
increases, it takes longer for an MCMC, which samples the full joint
posterior, to converge.

To circumnavigate these problems, machine learning techniques
have been explored in various astrophysical and cosmological prob-
lems. In the context of 21-cm cosmology, one common approach is
to use emulators, which are trained using artificial neural networks
to replace actual simulations. This makes the likelihood evaluations
and, consequently, the parameter inference significantly faster (Kern
etal. 2017; Schmit & Pritchard 2017; Shimabukuro & Semelin 2017;
Tiwari et al. 2022). However, the application of emulators is currently
limited to low-order summary statistics. The likelihood could become
intractable for higher-order information such as the full 3D 21-cm
images. For a tractable likelihood function, the traditional MCMC
algorithm can be used to sample from the posterior distribution.
However, when the likelihood itself is intractable, techniques such
as the Approximate Bayesian Computation (ABC) (Toni et al. 2008)
can be used to sample from the approximate posterior. This approach
uses simulated data sets to avoid the likelihood evaluations; however,
it requires the introduction of summary statistics, which can signifi-
cantly affect the quality of the approximation.

These issues can be resolved by performing a Simulation-Based
Inference (SBI) (Alsing et al. 2019; Papamakarios, Sterratt & Murray
2019; Cranmer, Brehmer & Louppe 2020), where deep learning
algorithms along with the ABC are used to estimate the posterior
distribution. In this work, we will apply the Marginal Neural Ratio
Estimation (MNRE) algorithm (Miller et al. 2021) using SWYFT?
(Miller et al. 2022). It directly estimates the marginal likelihood-
to-evidence ratios through neural networks, which makes it much
more efficient than sampling the full joint posterior with an MCMC.
In addition, MNRE offers the flexibility to ignore large numbers of
nuisance parameters, learning only the parameters of interest. This
has already been applied for the cosmological parameter inference
from the CMB power spectra (Cole et al. 2022), reconstructing the
halo clustering and halo mass function from N-body simulations
(Dimitriou, Weniger & Correa 2022), and gravitational lensing
analyses (Coogan et al. 2022).

In this work, we use this framework for the astrophysical parameter
inference with the 21-cm power spectrum from the CD-EoR. In a
recent study, Zhao, Mao & Wandelt (2022b) have performed the
reionization parameter inference from the EoR using the density
estimation likelihood free inference. Their analysis, however, was
limited to a 2D parameter space to model the 21-cm signal during
the EoR. Here, we extend the parameter space to six dimensions to

Thttps://github.com/BradGreig/21cmMC
Zhttps://github.com/21-cmfast/21cmFAST
3https://github.com/undark-lab/swyft
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also include the parameters that govern the inhomogeneous X-ray
heating during the CD. In this case, a single 21-cm power spectrum
simulation is ~5 times slower than the former 2D parameter space.
This implies that an MCMC for the six-dimensional parameter space
would be even slower because of the typical exponential scaling of
the required samples as a function of the number of parameters.
Moreover, such analysis with conventional methods while also co-
varying the cosmic seed for the forward models is pushed out of the
realm of feasibility.

Generating the simulated data set and performing the inference
with MNRE are two independent processes within SWYFT. This allows
us to utilize the same training data set for various applications. To
highlight this aspect of SWYFT, in a worked-out example, we will let
the neural network determine which set of parameters are sensitive at
which redshifts at no extra cost of 21-cm simulations. The distribution
of integration time over different redshifts can be considered a proxy
to determine which part of the data each parameter is most sensitive
to. This could be indicative of the possible degeneracies between
parameters for more complex astrophysical models of the 21-cm
signal.

This paper is organized as follows: In Section 2, we briefly outline
the implementation of MNRE using SWYFT. In Section 3, we describe
the 21-cm signal modelling and the parameters of interest. In Section
4, we present the posterior inference and investigate the sensitivity
of model parameters in different redshift ranges. We conclude in
Section 5. Throughout this work, we assumed a A cold dark matter
Universe with cosmological parameters 2, = 0.308, €, = 0.048,
Qp =0.692,h=0.678, and 0§ = 0.81 (Planck Collaboration 2016a).

2 IMPLEMENTATION OF MNRE USING SWYFT

The probability distribution of model parameters @ for a given
observation x follows from Bayes’ theorem

p(x10)
px)

where p(x|0) is the likelihood of the data x for given parameters
0, p(#) is the prior probability distribution over the parameters, and
p(x) is the evidence of the data.

In sBI, the information about the likelihood is implicitly accessed
via a stochastic simulator, which maps from input parameters 6
to data x. We generate sample-parameter pairs from this simulator
{(x',0")(x2,0?%),---}. Here @' is typically drawn from the prior, so
these pairs are drawn from the joint distribution p(x, @). These pairs
are used to train a neural network to approximate the likelihood-
to-evidence ratio, a procedure known as Neural Ratio Estimation
(Durkan, Murray & Papamakarios 2020; Hermans, Begy & Louppe
2020a, b). Following equation (1), this ratio (which we denote
r(x, 6)) can be expressed as:
w0y < PO O p.0) .

p(x) p@)  p(x)p®)
In other words, r(x, #) is equal to the ratio of the joint probability
density p(x, @) to the product of marginal probability densities
p(x) p(0). A binary classifier dy(x, 8) is then trained to distinguish
between jointly drawn and marginally drawn pairs. Here ¢ denotes
the learnable parameters of the model, which are updated as the
model is trained.

More precisely, we introduce a binary label y to denote whether a
pair was drawn jointly (y = 1) or marginally (y = 0). Strictly speaking,
y is a random variable. The output of the classifier (assuming it is
trained well) approximates the probability that a sample-parameter

p@x) =

p®). )
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pair (x, @) is drawn jointly (y = 1), i.e.

dg(x,0) ~ p(y = 1]x,6)
_ px,0ly=Dply=1)
~ p(x, 0]y =Dp(y = 1)+ p(x, 0]y = 0)p(y = 0)
p(x,0)
p(x,0)+ p(x)p@6)

where we assumed p(y =0)=p(y=1) = % This learning prob-
lem is associated with a binary cross-entropy loss function

—/ [p(x, 0)Indy(x,0)+ p(x) p(0)In{l — dy(x, 0)}] dx dé,
3

which is minimized using stochastic gradient descent to find the
optimal parameters ¢ of the network. The binary classifier is simply
a dense neural network with a few hidden layers. Once the network
is trained, it results in

p(x,0) r(x,9)

GO O+ P ®  rx b1 @

which can be re-written as

d¢(x, 0)
dy(x,0) — 1

d¢(x, 0)

r.6)~ ds(x.0)— 1

= p@lx) ~ p(0) ®)
to estimate the posterior probability distribution. This procedure can
directly estimate marginal posteriors by omitting model parameters
from the network’s input, a variant called MNRE. In this work, we use
MNRE as implemented in the software package SWYFT (Miller et al.
2022).

3 SIMULATIONS AND TRAINING DATA

3.1 21cmFAST

To model the 21-cm signal and the underlying astrophysics of heating
and reionization, we use the publicly available semi-numerical
formalism, 21cmFAST (Mesinger et al. 2010). We first generate
the initial density perturbation at z = 300 on a high-resolution
10243 grid. These perturbations are evolved using the Zel’dovich
approximation (Zel’dovich 1970) at later redshifts. To produce the
ionization map, the high-resolution density field is first mapped
on a coarser grid. Then, 21cmFAST uses an excursion-set based
formalism (Furlanetto, Zaldarriaga & Hernquist 2004) to identify
the ionized regions by comparing the number of ionizing photons
with the number of baryons within the spheres of decreasing radius
Riin < R < Ryx. Here, Ry, depends on the spatial resolution of the
simulation, and Ry« is the maximum horizon for ionizing photons
(see Section 3.1.3). A grid point located at (X, z) is considered fully
ionized if for any Ry,iy < R < Rpax

¢ feon(X, 2, Ry Minin) > 1, (6)

where ¢ represents the ionizing efficiency (see Section 3.1.1) and
Jeol(X, 2, R, Mmin) 1s the fraction of collapsed matter within a spherical
region of radius R centred at (X, z), which depends on the minimum
mass of the halo formation M,,;, (Press & Schechter 1974; Sheth &
Tormen 1999). The cells that do not satisfy equation (6) are assigned a
partial ionization fraction, {f.on(X, z, Rmin)- The resulting ionization
map is then converted into the 21-cm brightness temperature map

Inference from 21-cm P(k) through MNRE 6099
using (Furlanetto, Oh & Briggs )
3 Qh?\ (015 1+2\'?
8Ty = 27(1 — xpu) (1 + 8p) (0.023) (thz 10 )
> (TS - TCMB) |: arvr :| i (7)
Tems (I+2)H(z)

where xyy is the ionization fraction, &y, is the baryon overdensity,
Qn is the matter density, 2, is the baryon density, & is the
Hubble parameter, Ts and Tcymp are the spin temperature and CMB
temperature, respectively, and the last term takes into account the
velocity gradient along the line of sight.

The spin temperature 75 can couple to (i) the CMB temperature
Tems, in which case 67, = 0, (ii) the kinetic gas temperature Tk
through collisional coupling, and (iii) the Ly-« colour temperature
Tc through the Wouthuysen—Field coupling (Wouthuysen 1952),
where Tc =~ T. To track the evolution of the gas temperature,
21cmFAST simulates the inhomogeneous heating of the IGM by
X-rays by integrating the angle-averaged specific X-ray emissivity
(ex) along the lightcone for each cell. The specific X-ray emissivity
is given as (Mesinger et al. 2010; Greig & Mesinger 2017)

L dfeon(z
ex(® E,2) = =X | puoSo £u(1 + 8y et @

_—, 8
SFR dr ®

where pic 15 the current critical density, f, is the fraction of baryons
in stars, &y is the evolved density. The term enclosed in square
brackets is the star formation rate (SFR) density along the lightcone.
Ly is the specific X-ray luminosity which is assumed to follow a
power law, Lx o« E~*X. The photons below an energy threshold
E, are absorbed by the interstellar medium. The X-ray efficiency
is normalized by quantifying an integrated soft-band (<2 keV)
luminosity per SFR

L - 2keV L
X<2keV :/ X \4g. ©)
SFR . SFR

0

The semi-numerical model adopted in this work consists of six
astrophysical parameters which govern the evolution of the 21-
cm signal during the CD-EoR. We briefly describe each of these
parameters and the adopted priors below.

3.1.1 Ionizing efficiency, (¢)

The UV ionizing efficiency of high-redshift galaxies can be expressed
in terms of various factors as (Barkana & Loeb 2001; Mesinger et al.
2010)

_ fesc f* Ny/b 2
¢=30 ( 30 ) (o.os) (4000) (1 +n) ’ 1o

where f. is the fraction of ionizing photons that escape into the IGM,

. 1s the fraction of galactic gas in stars, N, is the number of ionizin
. g g y g

photons produced per baryon in stars, and 7, is the average number
of times a hydrogen atom recombines. We assume a single population
of efficient star-forming galaxies (a constant ionizing efficiency for
all the galaxies) hosted by haloes with a sufficient mass.

The timing and duration of reionization strongly depend on ¢.
Large values of ¢ will speed up the ionization process if we keep the
other parameters fixed. We adopt a flat prior ¢ € (10, 100), although
an extended range with the upper limit of { = 250 has also been
studied in Greig & Mesinger (2017) to explore the models where the
EoR is driven by rare, very bright galaxies.

MNRAS 525, 6097-6111 (2023)
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3.1.2 Minimum virial temperature of haloes, T"

The minimum threshold for a halo to host a star-forming galaxy is

defined in terms of its virial temperature, 72", It is related to the
mass of the halo (Barkana & Loeb 2001) as:

108 [0.6 10  Tmn r/z[ﬂm A, r/z
10° _ TR -

Mmin — i vir
w 142198 x 10* Qz 18n2

vir h

an

where p is the mean molecular weight, Q% = Q,,(z), and A, = 1872
+ 82d — 39d? where d = QF, — 1. The choice of 7" determines
the cut-off in the UV luminosity function. Galaxies that are hosted
within a halo with Ty;; < 7™ have no contribution to star formation
due to internal feedback processes. We note that 72" has a significant
impact on both the EoR and the Epoch of Heating (EoH) because,
within the 21cmFAST framework, the physics of star formation
drives both the X-ray heating and ionization fields.

We adopt a flat prior on T™" € (10%, 10°) K. The minimum
temperature required for efficient atomic cooling defines our lower
limit of 71" = 10* K, and the upper limit is consistent with the

observation of Lyman break galaxies at high redshifts (Kuhlen &
Faucher-Giguere 2012; Barone-Nugent et al. 2014).

3.1.3 Mean free path of the ionizing photons, R,

The physical size of the ionized region is governed by the distance
ionizing photons propagate through the IGM, which depends on the
population of the photon absorption systems where recombinations
take place. To take into account this effect, we define Ry, as the
maximum horizon for the ionizing photons.

It has been shown by Greig & Mesinger (2017) that this parameter
is only sensitive during the later stages of reionization when the
typical size of the HII regions approaches Ryf,. We use a flat prior
on Ry € (5, 25) cMpc similar to Greig & Mesinger (2015), which
is consistent with the sub-grid recombination model of Sobacchi &
Mesinger (2014).

3.1.4 Integrated soft-band luminosity, Lx_»yev/SFR

The total integrated soft-band (<2 keV) luminosity per SFR escaping
the host galaxies (Lx-2kev/SFR) controls the efficiency with which
X-rays heat the IGM. It decides the timing and duration of the EoH
in a manner similar to ¢ for the EoR.

For sufficiently large values of Lx_xev/SFR, the X-rays can also
ionize the IGM at ~ 10 — 20 per cent level, in addition to heating.
We use a flat prior on log,,(Lx<2kev/SFR) € (38, 42). This range is
motivated by population synthesis models at high redshifts (Fragos
et al. 2013) and the observations of the local population of galaxies
(Mineo, Gilfanov & Sunyaev 2012; Sazonov & Khabibullin 2017).

3.1.5 X-ray energy threshold for self-absorption by the host
galaxies, Ey

The soft X-rays produced by the host galaxies can be absorbed by
the interstellar medium, in which case they can no longer contribute
to the heating of the IGM. From the simulations of high z galaxies,
it has been shown by Das et al. (2017) that the attenuation of the X-
ray profile can be approximated by a step function below an energy
threshold Ej.

The small values of E lead to very efficient and inhomogeneous
heating. It has been shown by Pacucci et al. (2014) that the amplitude

MNRAS 525, 6097-6111 (2023)

Table 1. Observation parameters for
SKAT1 low configuration used in this
work to simulate the thermal noise.

Parameter Value

N, ant 5 12
Av 195.3 kHz
At 10s
day

Lobs 6h

1ot 1000 h

obs

of the power spectra for such softer spectral energy distributions
(SEDs) is larger by up to an order of magnitude. We adopt a flat prior
on Ej € (0.1, 1.5) keV.

3.1.6 X-ray spectral index, ax

The spectral index governs the spectrum that emerges from the X-ray
sources and depends on the dominant physical process emitting the
X-ray photons. We take a flat prior on ax € (— 0.5, 2.5) similar
to Greig & Mesinger (2017) to take into account various relevant
X-ray SEDs such as high-mass X-ray binaries, mini-quasars, host
interstellar medium, supernovae remnants.

Our simulations are performed within a [250 chc]3 box on a
[128]3 grid. The training data is composed of 20 000 power spectra
samples evaluated at ten different redshifts in range (25, 6). These
samples are drawn randomly from the priors. We use 80 per cent of
the samples for training, 10 per cent for validation, and 10 per cent
for the test data set. We also vary the cosmic seed in our forward
models. The impact of the size of the training data is investigated in
Appendix D.

3.2 Telescope noise profile

To simulate the thermal noise, we first estimate the uv coverage
for SKAI low, assuming 1000h of observations. Thermal noise
is simulated using ps_eor* by creating a system equivalent flux
density of 2500 Jy at the central frequency of the observation.
The current configuration of SKAI1-Low has 512 stations, 224 of
which are placed randomly in a circular core of radius 350 m. The
remaining 288 stations are distributed among 36 clusters in three
spiral arms extending up to a radius of 35km from the central
core. We integrate for 10s per visibility and observe for 6h each
day with a frequency resolution of 195.3kHz. These parameters
are tabulated in Table 1. This results in the thermal noise (o germ)-
Note that in Greig & Mesinger (2017), the authors also include a
20 per cent modelling uncertainty on the sampled power spectra to
take into account the differences with various semi-numerical and
radiative transfer simulations. This can be easily incorporated with-
out running any additional 21-cm signal simulations in our analysis.
The impact of including the modelling uncertainty is discussed in
Appendix C.

3.3 Mock observation

To form our mock observation, we consider a model with
{£.10g,0(T™), Ruysp, log,o(Lx), Eo, ax} = {30, 4.70, 15, 40.5, 0.5,

1}. It corresponds to the FAINT GALAXIES model from Mesinger,

“https://gitlab.com/flomertens/ps_eor
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Figure 1. The cosmological (black) and noisy (orange) mock power spectrum for the FAINT GALAXIES model at different redshifts, where k € (0.1, 0.8)

Mpc~!. The shaded region represents the power spectrum uncertainty level.
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Figure 2. Illustration of the network architecture. Input data x and parameters @ are mapped to the marginal parameter combinations. The individual ratio
estimators are trained with an MLP. The outputs are estimated ratios (x, #) for the marginal posteriors of interest.

Greig & Sobacchi (2016) and Greig & Mesinger (2017) in which
reionization is driven by numerous sources with low ionizing
efficiency. This set of parameter values results in the reionization
history and the Thomson optical depth t consistent with Planck data
(Planck Collaboration 2016b). The mock observation is simulated
within a [500 chc]3 box on a [256]° grid.

In Fig. 1, we show the cosmological 21-cm power spectra
(black line) from our mock observation at different redshifts. The
shaded region represents the 21-cm power spectrum uncertainty.
We then draw a random realization from the normal distribution
~ N0, crtﬁerm(k, 7)), and add it to the cosmological 21-cm power
spectrum to form the noisy mock observation (orange line). We
restrict our analysis to the k-modes in the range k € (0.1, 0.8)
Mpc~! to avoid the impact of foreground contamination on large
scales and thermal noise on small scales (Greig & Mesinger
2015, 2017).

4 RESULTS

In this section, we discuss the application of SWYFT to obtain the
posterior probability distributions for our six-dimensional 21-cm
power spectra model for the simulated mock observation and explore
the constraints on different astrophysical parameters as a function of
redshift in Section 4.1. In Section 4.2, we show how the distribution
of integration time over different redshifts can be used as a proxy
to find which part of the data each model parameter is sensitive to.
These examples emphasize the flexibility of our framework.

4.1 Posterior inference with SWYFT

To obtain the posterior distribution from MNRE, we first concatenate
the power spectra from different redshifts into a 1D array. This is
then fed as the input for the multi-layer perceptron (MLP) with three

MNRAS 525, 6097-6111 (2023)

$20Z Aienuep G| uo Jasn wepislswy UBA NIBNSISAIUN AQ L€/ 192///609/¥/SZS/e1onie/Seiuw/woo dnooiwspese//:sdiy woll papeojumoq



6102 A. Saxena et al.

|FAINT GALAXIES | 10f e
0.8 F A
= 0.6
] = 2 B Fiducial Model
££5:01 04 P SKA (10)
T /. °
55 s N SKA (20)
oo 401 ! B e
'_‘o 1 i L L 1 L 1 L L 1 1 L
— 6 7 8 9 10 12 14 17 20 2
200 |
1 i z
e 11
Soid
104 i
—— |
/; 41 _' E ] E ] ZEoH T+ ZEoR
3 1 ] ! ]
T e S
g0 | 2 I D ¢ B
L R A A
S 05 -G
02 | 1 11
- I I I_ L DL _I I I 1 T I _I ot
24 . 3 3 3
TN - - - - . - - - |
0 § 1 S 1 ¢ H © |
1 Yt L e L e e s RS R B
30 60 90 45 50 10 15 20 40 41 02 05 08 0 1 2

Figure 3. Recovered 1D and 2D marginals for the six-dimensional FAINT GALAXIES model assuming 1000 h observation from SKA. The dashed lines
denote the input parameters {¢, loglo(T“‘i“), Runfp, log o(Lx), Eo, ax} = {30,4.70, 15, 40.5, 0.5, 1}. Inset: Recovered 1o and 20 constraints on the reionization

vir

history. The dashed line shows the evolution of ¥u1(z) for the fiducial model.

layers, each containing 256 neurons. The network is trained with
a batch size of 64, and we decay the initial learning rate of 1073
by 0.95 after every epoch. The output of the trained network is the
estimated ratios for the parameters of interest. In Fig. 2, we show a
schematic diagram of the network architecture. Once the network is
trained, the ratio estimator allows for very fast MCMC sampling from
the approximate posterior.

In Fig. 3, we present the posteriors on the astrophysical parameters
obtained from SWYFT for the FAINT GALAXIES model assuming
1000 h observation from the SKA. The diagonal panels show the

MNRAS 525, 6097-6111 (2023)

1D marginalized posterior for each parameter, and 2D marginals are
shown in the lower off-diagonal panels. The dashed lines represent
the true value of the parameters. The inferred model parameters
and the corresponding 16th and 84th percentiles are tabulated in
Table 2.

Consistent with Greig & Mesinger (2017), we are able to tightly
constrain all our model parameters except ax, which has a relatively
small impact on the amplitude of the 21-cm power spectra. The small
degeneracies between ¢ — log,( Triny and Ey — ax are in agreement

vir

with Greig & Mesinger (2017), and the findings of Ewall-Wice et al.
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Table 2. The inferred parameter values and the associated 16th and 84th percentiles for the posteriors from (i) zgon + ZEor Sshown in

Fig. 3, and (ii) zgon and zgor shown in Fig. 4.

Model ¢ log,o(Tmin Rmnfp logio(Lx) Eo ax
ZEoH + ZEoR 30.251210 4707903 14.6510:3 40.4975:04 0.507903 0.847039
RIS 4707 - 4049700 049700 068*D3)
ZEoR 29.3572 00 4.6610:0% 14.6510:3 40.477513 0.32739 -

(2016) and Kern et al. (2017). In the top right panel of Fig. 3, we
show the 1o and 20 constraints on the mean neutral fraction (j{yr)
as a function of redshift z, where the dashed line represents the true
ionization history of the model. For this analysis, we use ju,(z) in
place of parameters @ of the network architecture shown in Fig. 2.
We find tight constraints on the ionization history from the SKA.

Next, we investigate the sensitivity of our model parameters
during different redshifts. We perform the parameter inference by
dividing the entire redshift range into two bins: (i) zgon € (25, 12),
which corresponds to the X-ray heating, and (ii) zgor € (11, 6) that
corresponds to reionization. Note that this analysis does not require
any extra 21-cm power spectra simulations. The same training data
can be re-used with a minimal change in the network’s architecture,
which is not possible for an MCMC analysis. In this case, the MLP
takes the power spectra from zg,y (Or Zgor) as the input and estimates
the ratios for the parameters of interest.

In Fig. 4, we show the resulting 1D and 2D marginal posteriors
from zgoy (red) and zgor (blue). The inferred parameters and the
corresponding 16th and 84th percentiles are tabulated in Table 2. We
find that ¢, 10g,0(Tv‘{f“) and Ry, are well constrained with the 21-cm
power spectra from zgor, Which is expected as these parameters play
a significant role during reionization. On the other hand, log,,(T.2i"),
logio(Lx) and Ej are constrained with the power spectra from zgoy.
Note that the minimum virial temperature of a halo to host the star-
forming galaxies, 71" can be well constrained with either redshift
bin because, within 21cmFAST, the galaxies that host the ionizing
sources are the same galaxies that are responsible for X-ray heating.
So, this parameter impacts both the EoH and EoR.

In the top right panel of the Fig. 4, we show the constraints on
reionization history from the 21-cm power spectra during zgoy (red)
and zgor (blue). We find that from the 21-cm power spectra at Zgoy,
we can constrain the neutral fraction reasonably well at z > 12 (zgon),
but it does not provide tight constraints during the intermediate and
late stages of reionization. However, with the 21-cm power spectra
at Zgor, We can infer the entire reionization history of the FAINT
GALAXIES model. The constraints from the 21-cm power spectra
at zgor on the neutral fraction at zg,y comes from the fact that
throughout our models, the neutral fraction g, ~ 1 at z > 12.

4.2 Information from different redshifts

In order to study the information content from different redshifts, we
consider a toy scenario where we use the distribution of integration
time over different redshifts as a proxy to find which part of the
data each parameter is most sensitive to. So far, in our analysis, we
considered the distribution of integration time to be uniform over
redshifts. However, for a fixed total integration time, this distribution
can be optimized since the thermal noise level at redshift z depends
on the integration time ¢, allocated for that redshift.

The optimization is achieved via gradient descent by maximizing
the information the network learns about any given parameter from
different redshifts. For a fixed total integration time 7o, we optimize

the integration time for each redshift 7., such that Ty = > 1,. We
parametrize ¢, as:

t; = (Tiw X softmax(v)), , (12)

where v is a vector that corresponds to the number of redshift bins.
Larger components in v correspond to more integration time for that
redshift bin. Next, we consider v to be one of the network parameters
that is optimized during the training. As we train the classifier (MLP)
to learn the 1D posterior for any given parameter, at the same time,
it learns the optimal way of distributing the integration time for that
parameter. We further obtain the uncertainties on the optimal time
distribution through Monte Carlo Dropout (MCD) (Gal & Ghahramani
2016).

In Fig. 5, we show the results from this information content
analysis. For each parameter, the top panel shows the uniform time
distribution (orange dashed line) and the optimized time distribution
(violins), where the uncertainties follow from the MCD. The bottom
panel shows the histogram of the 1o uncertainty interval on the
posterior distribution of each parameter from 500 different mock
observations drawn randomly from the test data set assuming the
uniform (orange) and optimized (black) time distribution.

We find that the parameters loglo(Tv'i‘}i“), logio(Lx), Eo, and ox
are assigned a larger integration time at high redshifts z > 12 after
the optimization of the network. This implies that the information
for these parameters is contained at high redshifts. These findings
are consistent with the posteriors from zgoy and zg,r shown in
Fig. 4. On the contrary, for the mean free path Ry, the network
allocates large integration time at redshift z = 9. This is also
in agreement with the analysis in Fig. 4, where we found a flat
posterior on Ry, from zgoy, and the constraints only came from
ZEor - For each parameter, the histogram of the 1o uncertainty interval
from the optimized integration time distribution tends towards lower
lo uncertainty on the posterior distribution, which indicates that
the network learns more information about a given parameter from
the optimized time distribution in comparison to the uniform time
distribution.

5 SUMMARY

In this paper, we performed Simulation-Based Inference through an
MNRE algorithm, SWYFT, to constrain the astrophysical parameters
that govern the X-ray heating and reionization during the CD-EoR.
We used 21cmFAST to model the 21-cm power spectra during
CD-EoR with a six-dimensional astrophysical parameter space.
We showed that this framework is significantly more efficient as
it directly learns the marginal posteriors of interest through neural
networks than the conventional likelihood-based methods such as
MCMC, which samples the full joint posterior.

With the training data composed of 20 000 21-cm power spectra
simulations and the expected thermal noise level from the SKA,
we were able to constrain the parameters of our model. The 1D
and 2D marginal posteriors obtained through MNRE look consistent
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Figure 4. Recovered 1D and 2D marginals from zgey (red) and zgor (blue) for the six-dimensional FAINT GALAXIES model assuming 1000 h observation
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recovered reionization history from the 21-cm power spectra during zgon (red) and zgor (blue).

with the earlier studies performed with an MCMC, which required an
order of magnitude more samples to converge. We further checked
the statistical consistency of the trained network by evaluating the
nominal and empirical expected coverage probabilities.

Within SWYFT, generating the training data set and MNRE are two
independent processes. This feature gives us the flexibility to reuse
the simulations and utilize the same training data set for various
applications. To demonstrate this aspect of SWYFT, we investigated
the sensitivity of different parameters over two different redshift
ranges that correspond to the EoH (zg,y) and EoR (zg.r ). We obtained
the posterior probability distribution on the model parameters from

MNRAS 525, 6097-6111 (2023)

Zgon and Zgor at no extra cost of 21-cm power spectra simulation. An
MCMC analysis in this scenario would otherwise require a new chain,
and the simulations can not be used efficiently.

We further studied the information content for each parameter from
different redshifts by considering a toy scenario where we consider
the distribution of the integration time to be part of the network
parameters, which is optimized during the training. We found the
optimized time distribution to be consistent with the posterior
probability distribution of model parameters from zgoy and zZgor.
This could be used as an indicator of the possible degeneracies for
more complex astrophysical 21-cm signal models without running
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Figure 5. Result of integration time optimization as a proxy for information content for ¢, loglO(Tmi“), Runfp, log10(Lx), Eo, ax. Top panel: Violins represent
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the optimized time distribution, and the orange line shows the initial time distribution. Bottom panel: The histogram of 1o uncertainty interval on the posterior
distribution of each parameter for 500 different mock observations drawn randomly from the test data set assuming a uniform (orange) and optimized (black)

time distribution.

additional simulations. This establishes that with such efficient and
scalable inference techniques, one can increase the complexity of the
21-cm model even further, which could otherwise be impractical for
the likelihood-based approaches.

While our analysis has shown that MNRE is a powerful framework
to analyse the 21-cm power spectrum, in reality, the 21-cm signal
during CD-EoR is highly non-Gaussian (Shimabukuro et al. 2016;
Majumdar et al. 2018; Watkinson et al. 2018), so the 21-cm power
spectrum is probably not the most optimal summary statistics to use
for parameter inference. In future work, we plan to explore the higher-
order summary statistics such as the 21-cm bispectrum (Tiwari et al.
2022), the morphology of the ionized regions (Gazagnes, Koop-

mans & Wilkinson 2021; Kapahtia et al. 2021) and convolutional
neural networks on the 21-cm tomographic images (Gillet et al.
2019; Zhao et al. 2022a) for parameter inference through MNRE.
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Figure Al. Empirical expected coverage probability (1 — &) of the trained network as a function of confidence level (1 — «) for all 1D and 2D marginal
posteriors. In case of a perfect coverage, the purple line coincides with the green dashed line.

APPENDIX A: COVERAGE OF THE NETWORK

With the trained network dy4(x, ), we can quickly estimate the
posterior p(@|x) for any mock observation x. This allows us to test
the statistical properties of the Bayesian inference. We evaluate the
nominal and empirical expected coverage probabilities to check the
consistency of the trained network. Given a set of n i.i.d. samples
(x;, 07)~ p(x, @), the empirical expected coverage probability of the
(1 — ) highest posterior density regions (HPDR) for the posterior
estimator p(@|x) is given as (Hermans et al. 2022)

1-a= %Zﬂ (07 € ©ppie)(1 — )]
i=1
where © ;)x,)(1 — @) function gives the (1 — o) HPDR of p(0|x)
for the mock data x; with the ground truth . We then compare it
with the nominal expected coverage probability, which is equal to
the confidence level (1 — «). For an estimator with perfect coverage,
the empirical coverage probability is equal to the nominal coverage
probability, so when we randomly generate n samples (x;, 67) ~

(A1)
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p(x, 0), the ground truth 87 lies outside the (1 — o) HPDR in o of
the cases (Cole et al. 2022).

We re-parametrize o (&) in terms of a new variable z which is
1 — a/2 (1 —&/2) quantile of the standard normal distribution.
This means that the (1, 2, 3)o regions correspond to z = (1, 2,
3) with (1 — o) = (0.6827, 0.9545, 0.9997). The uncertainties on
the empirical expected coverage probability follow from the finite
number of samples (n) and are estimated using the Jeffreys interval
(Cole et al. 2022). In Fig. Al, we show the empirical expected
coverage probability of the network as a function of confidence levels
for all 1D and 2D marginal posteriors. We find that in all cases, they
match to good precision.

APPENDIX B: COMPARISON WITH 21CMMC

In this section, we compare the posteriors obtained from MNRE with
an MCMC sampling-based method, 21CMMC. As sampling our joint

mcinc

—swyft

Tvir

Figure B1. Comparison of the 1D and 2D marginal posteriors estimated from
21CMMC (red) with MNRE (blue) for the FAINT GALAXIES reionization
model (¢, log;o(Ty™) = (30, 4.70).

MNRAS 525, 6097-6111 (2023)

six-dimensional parameter space with the likelihood-based approach
is computationally very demanding, we shrink our parameter space
to two dimensions, including ¢ and log, (7). We keep the other
parameters fixed to {Rmgp, logio(Lx), Eo, ax} = {15,40.5,0.5, 1}
and target redshifts z = 10, 9, and 8.

To set up 21cMMC, we use 48 random walkers with 2000 iterations
each, generating ~10° samples. On the other hand, the training data
for MNRE consists of 10* simulations. The mock observation with
(¢, log,o(TMiny) = (30, 4.70) is generated using a different realization
of the density field from the one used in sampling. In Fig. B1, we
show the posteriors obtained from 21CMMC (red) and MNRE (blue).
The 1D and 2D marginal posteriors obtained from MNRE are in good
agreement with 21CMMC at a significantly reduced computational
cost. These results are consistent with the findings of Zhao et al.
(2022b).

APPENDIX C: IMPACT OF INCLUDING
MODELLING UNCERTAINTY

In this section, in addition to thermal noise, we consider an additional
source of uncertainty due to the EoR modelling. We assume a
constant multiplicative error of 10 per cent to take into account the
errors in semi-numerical approximations. This is added in quadrature
to the thermal noise uncertainty to get the 21-cm power spectrum
uncertainty

oki,z) = \/Ulierm(ki, 2) + Ooglhis 2).- (ChH

In Fig. C1, we show the recovered 1D and 2D marginal posteriors
assuming a 10 per cent modelling uncertainty (red), and compare it
with the constraints derived by excluding this error (green). We find
that including the modelling uncertainty results in wider posteriors,
which is consistent with Greig & Mesinger (2015). The inferred
model parameters and the corresponding 16th and 84th percentiles
for both scenarios are tabulated in Table C1. We note that this
analysis does not require re-running any 21-cm signal simulations.
The existing training data with the modified noise model given by
equation (C1), which is sampled on-the-fly during the training of the
network, can be re-used. This example demonstrates the flexibility
and efficiency of our approach.
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Figure C1. Recovered 1D and 2D marginals with (red) and without (green) including 10 per cent modelling uncertainty on the 21-cm power spectra. The dashed

lines denote the input parameters {Z, log;(
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Table C1. The inferred parameter values and the associated 16th and 84th percentiles for the posteriors shown in Fig. C1
with and without including 10 per cent modelling uncertainty.
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APPENDIX D: IMPACT OF THE SIZE OF
TRAINING SET ON THE POSTERIORS

In this section, we investigate the size of the training set needed to
achieve the convergence for MNRE. Our default training set contains
2 x 10* (Msamp) 21-cm power spectra samples. We re-train the neural
ratio estimator with a subset of training set with ngyp, = 10* to
estimate the posterior distribution of model parameters.

In Fig. D1, we present and compare the recovered 1D and
2D marginal posteriors generated from ngm, = 2 x 10* (green)

and 10* (red) samples. The inset plot shows the 2o constraints
on reionization history. The inferred model parameters and the

corresponding 16th and 84th percentiles for both scenarios are
tabulated in Table D1. The posteriors on model parameters for

both cases match to excellent precision, which indicates the con-
vergence of MNRE. Therefore, ~10* simulations are sufficient to
preserve accuracy in our SBI framework which makes it 3—10 times
more computationally efficient than the classical methods of
inference.
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Figure D1. Recovered 1D and 2D marginals with the number of samples in the training data ngamp = 2 x 10* (green) and ngmp = 10* (red). The dashed lines
denote the input parameters {¢, loglO(Tmi“), Rinfp, 10g0(Lx), Eo, ax} = {30, 4.70, 15, 40.5, 0.5, 1}. The inset plot shows the recovered reionization history.
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Table D1. The inferred parameter values and the associated 16th and 84th percentiles for the posteriors shown in Fig. D1.

Model ¢ log, o (7.mim) Runp logo(Lx) Ey ox

4 42.70 10.03 40.56 £0.04 0.03 40.39
Hgamp = 2 % 10 30257270 4701003 14651030 40497004 (501003 () gt03
g = 10 0253l 4l usE  wenh sl oschl
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