9,507 research outputs found

    Techniques for controlling warpage and residual stresses in welded structures

    Get PDF
    Thermal pattern alteration technique controls both distortion and residual stresses in aluminum weldments. Cryogenic liquids and auxiliary heat sources are used to produce contraction and expansion of metal in the vicinity of the weld in such a manner as to counterbalance expansion and contraction caused by welding

    Development of controls for time-temperature characteristics in aluminum weldments Progress report no. 9, 1-31 Dec. 1965

    Get PDF
    Tooling concepts and processes to control time-temperature characteristics in order to improve tensile properties and reduce porosity in aluminum weldment

    Development of techniques for controlling warpage and residual stresses in welded structures Final report

    Get PDF
    Techniques for controlling warpage and residual stresses in welded aluminum alloy structures for Saturn projec

    Optical/Near-Infrared Observations of GRO J1744-28

    Full text link
    We present results from a series of optical (g and r-band) and near-infrared (K'-band) observations of the region of the sky including the entire XTE and ROSAT error circles for the ``Bursting Pulsar'' GRO J1744-28. These data were taken with the Astrophysical Research Consortium's 3.5-m telescope at Apache Point Observatory and with the 2.2-m telescope at the European Southern Observatory. We see no new object, nor any significant brightening of any known object, in these error circles, with the exception of an object detected in our 8 February 1996 image. This object has already been proposed as a near-infrared counterpart to GRO J1744-28. While it is seen in only two of our ten 8 February frames, there is no evidence that this is an instrumental artifact, suggesting the possibility of near-infrared flares from GRO J1744-28, similar to those that have been reported from the Rapid Burster. The distance to the ``Bursting Pulsar'' must be more than 2 kpc, and we suggest that it is more than 7 kpc.Comment: 21 pages, 5 JPEG plates, 2 postscript figures. This paper will appear in the May 1, 1997 edition of the Astrophysical Journa

    Rings of Dark Matter in Collisions Between Clusters of Galaxies

    Full text link
    Several lines of evidence suggest that the galaxy cluster Cl0024+17, an apparently relaxed system, is actually a collision of two clusters, the interaction occurring along our line of sight. Recent lensing observations suggest the presence of a ring-like dark matter structure, which has been interpreted as the result of such a collision. In this paper we present NN-body simulations of cluster collisions along the line of sight to investigate the detectability of such features. We use realistic dark matter density profiles as determined from cosmological simulations. Our simulations show a "shoulder" in the dark matter distribution after the collision, but no ring feature even when the initial particle velocity distribution is highly tangentially anisotropic (σθ/σr>>1\sigma_\theta/\sigma_r >> 1). Only when the initial particle velocity distribution is circular do our simulations show such a feature. Even modestly anisotropic velocity distributions are inconsistent with the halo velocity distributions seen in cosmological simulations, and would require highly fine-tuned initial conditions. Our investigation leaves us without an explanation for the dark matter ring-like feature in Cl 0024+17 suggested by lensing observations.Comment: 7 pages (emulateapj), 9 figures. Expanded figures and text to match accepted versio

    CC195 Sudan-Sorghum Hybrids for Forage Production

    Get PDF
    CC195 discusses Sudan-Sorghum hybrids for forage production

    High-Resolution Measurements of the Dark Matter Halo of NGC 2976: Evidence for a Shallow Density Profile

    Full text link
    We have obtained two-dimensional velocity fields of the dwarf spiral galaxy NGC 2976 in Halpha and CO. The high spatial (~75 pc) and spectral (13 km/s and 2 km/s, respectively) resolution of these observations, along with our multicolor optical and near-infrared imaging, allow us to measure the shape of the density profile of the dark matter halo with good precision. We find that the total (baryonic plus dark matter) mass distribution of NGC 2976 follows a rho_tot ~ r^(-0.27 +/- 0.09) power law out to a radius of 1.8 kpc, assuming that the observed radial motions provide no support. The density profile attributed to the dark halo is even shallower, consistent with a nearly constant density of dark matter over the entire observed region. A maximal disk fit yields an upper limit to the K-band stellar mass-to-light ratio (M*/L_K) of 0.09^{+0.15}_{-0.08} M_sun/L_sun,K (including systematic uncertainties), with the caveat that for M*/L_K > 0.19 M_sun/L_sun,K the dark matter density increases with radius, which is unphysical. Assuming 0.10 M_sun/L_sun,K < M*/L_K < 0.19 M_sun/L_sun,K, the dark matter density profile lies between rho_dm ~ r^-0.17 and rho_dm ~ r^-0.01. Therefore, independent of any assumptions about the stellar disk or the functional form of the density profile, NGC 2976 does not contain a cuspy dark matter halo. We also investigate some of the systematic effects that can hamper rotation curve studies, and show that 1) longslit rotation curves are far more vulnerable to systematic errors than two-dimensional velocity fields, 2) NGC 2976 contains large radial motions at small radii, and 3) the Halpha and CO velocity fields of NGC 2976 agree within their uncertainties. [slightly abridged]Comment: 30 pages, 4 tables, 13 figures (7 in color; Figures 1 and 3 are low-resolution to save space). Accepted for publication in ApJ. Version with full-resolution figures available at http://astro.berkeley.edu/~bolatto/ngc2976rotation.ps (46 MB

    Noble gas films on a decagonal AlNiCo quasicrystal

    Full text link
    Thermodynamic properties of Ne, Ar, Kr, and Xe adsorbed on an Al-Ni-Co quasicrystalline surface (QC) are studied with Grand Canonical Monte Carlo by employing Lennard-Jones interactions with parameter values derived from experiments and traditional combining rules. In all the gas/QC systems, a layer-by-layer film growth is observed at low temperature. The monolayers have regular epitaxial fivefold arrangements which evolve toward sixfold close-packed structures as the pressure is increased. The final states can contain either considerable or negligible amounts of defects. In the latter case, there occurs a structural transition from five to sixfold symmetry which can be described by introducing an order parameter, whose evolution characterizes the transition to be continuous or discontinuous as in the case of Xe/QC (first-order transition with associated latent heat). By simulating fictitious noble gases, we find that the existence of the transition is correlated with the size mismatch between adsorbate and substrate's characteristic lengths. A simple rule is proposed to predict the phenomenon.Comment: 19 pages. 8 figures. (color figures can be seen at http://alpha.mems.duke.edu/wahyu/ or http://www.iop.org/EJ/abstract/0953-8984/19/1/016007/

    Isotopic and spin selectivity of H_2 adsorbed in bundles of carbon nanotubes

    Full text link
    Due to its large surface area and strongly attractive potential, a bundle of carbon nanotubes is an ideal substrate material for gas storage. In addition, adsorption in nanotubes can be exploited in order to separate the components of a mixture. In this paper, we investigate the preferential adsorption of D_2 versus H_2(isotope selectivity) and of ortho versus para(spin selectivity) molecules confined in the one-dimensional grooves and interstitial channels of carbon nanotube bundles. We perform selectivity calculations in the low coverage regime, neglecting interactions between adsorbate molecules. We find substantial spin selectivity for a range of temperatures up to 100 K, and even greater isotope selectivity for an extended range of temperatures,up to 300 K. This isotope selectivity is consistent with recent experimental data, which exhibit a large difference between the isosteric heats of D_2 and H_2 adsorbed in these bundles.Comment: Paper submitted to Phys.Rev. B; 17 pages, 2 tables, 6 figure

    Mass-Varying Neutrinos from a Variable Cosmological Constant

    Full text link
    We consider, in a completely model-independent way, the transfer of energy between the components of the dark energy sector consisting of the cosmological constant (CC) and that of relic neutrinos. We show that such a cosmological setup may promote neutrinos to mass-varying particles, thus resembling a recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without introducing any acceleronlike scalar fields. Although a formal similarity of the FNW scenario with the variable CC one can be easily established, one nevertheless finds different laws for neutrino mass variation in each scenario. We show that as long as the neutrino number density dilutes canonically, only a very slow variation of the neutrino mass is possible. For neutrino masses to vary significantly (as in the FNW scenario), a considerable deviation from the canonical dilution of the neutrino number density is also needed. We note that the present `coincidence' between the dark energy density and the neutrino energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA
    corecore