2,481 research outputs found
Prevalence and Predictors of Household Food Insecurity among Adult/Youth Dyads at the Initiation of the iCook 4-H Two-Year Obesity Prevention Study
Objective: Determine food insecurity prevalence and predictors among adult/youth dyads enrolled in a childhood obesity prevention study (iCook 4-H).Methods: The iCook 4-H intervention was designed for youth (9-10 years old) and their adult main meals preparer to cook, eat, and play together. Although not an inclusion criteria, diverse, low income, and/or rural families were the target during recruitment. At baseline, adults completed surveys on food insecurity, socioeconomic and demographic characteristics and youth anthropometrics were collected with body mass index (BMI) calculated. Descriptive statistics were computed and chi-square analysis was conducted to test differences between potential predictors and food insecurity. Binomial logistic regression was used to assess the relationship between food insecurity and its predictors.Results: Thirty-four percent of households (n=71 of 206) were food insecure. Youth were primarily white (69.9%) and normal weight (58.3%). Adults were also primarily white (74.8%), overweight or obese (67.9%), married (68.9%), not participating in government assistance programs (57.8%), and held no college degree (55.3%). Based on the logistic regression model, households with a non-white youth (OR=13.53; 95% CI=3.33, 55.05), an adult without a college degree (OR=5.62; 95% CI=2.01, 15.73), and government assistance program participation (OR=5.63; 95% CI=2.63, 12.07) were significantly associated with household food insecurity. However, there was no significant association with BMI found (youth p=0.167; adult p=0.179).Conclusion: Consistent with previous findings, household food insecurity status was associated with youth race, adult education, and government assistance program participation. In contrast, no relationship between BMI and food insecurity status was observed in this study, which warrants further investigation
Shear viscosity of a crosslinked polymer melt
We investigate the static shear viscosity on the sol side of the
vulcanization transition within a minimal mesoscopic model for the
Rouse-dynamics of a randomly crosslinked melt of phantom polymers. We derive an
exact relation between the viscosity and the resistances measured in a
corresponding random resistor network. This enables us to calculate the
viscosity exactly for an ensemble of crosslinks without correlations. The
viscosity diverges logarithmically as the critical point is approached. For a
more realistic ensemble of crosslinks amenable to the scaling description of
percolation, we prove the scaling relation between the critical
exponent of the viscosity, the thermal exponent associated with the
gel fraction and the crossover exponent of a random resistor network.Comment: 8 pages, uses Europhysics Letters style; Revisions: results extende
Force-Extension Relation and Plateau Modulus for Wormlike Chains
We derive the linear force-extension relation for a wormlike chain of
arbitrary stiffness including entropy elasticity, bending and thermodynamic
buckling. From this we infer the plateau modulus of an isotropic
entangled solution of wormlike chains. The entanglement length is
expressed in terms of the characteristic network parameters for three different
scaling regimes in the entangled phase. The entanglement transition and the
concentration dependence of are analyzed. Finally we compare our findings
with experimental data.Comment: 5 pages, 1 eps-figure, to appear in PR
Prospectus, September 16, 1987
https://spark.parkland.edu/prospectus_1987/1018/thumbnail.jp
Therapeutic Monoclonal Antibodies to Prevent Tuberculosis Infection
Mycobacteria tuberculosis (Mtb) is a major cause of human morbidity and mortality. Transmission occurs through inhalation of aerosolized Mtb and the initial infection is believed to occur primarily in the alveolar macrophage, although Mtb can infect other cells residing in the lung including dendritic cells, pneumocytes and M cells. Several molecules derived from Mtb are involved in the attachment of the organism to host receptors (opsonic and non-opsonic), which have been reasonably well elucidated. However, a complete understanding of how Mtb attaches to the host and the relative importance of each mechanism on the outcome of infection remains elusive. We hypothesize that protection from infection is possible by blocking the critical initial surface interactions of the organism with the host cell using specific monoclonal antibodies (mAbs). To develop effective mAbs, the outermost layers of Mtb, the capsule and outer membrane, were isolated and characterized by protein gel and LC/MS/MS. Approximately 1000 different proteins were identified in the isolations, of which ~25% were unique to one of the two fractions. The capsule or outer membrane preparations were used as antigens to immunize CD1 mice for up to 12 weeks to generate antibodies via traditional hybridoma generation. Antibodies were screened, selected and characterized by their ability to bind whole cell Mtb by ELISA, demonstration of unique heavy chain variable region sequence and binding specificity by Western Blot. Of approximately 1500 screened hybridomas, 30 lead mAbs have been isolated with specificity to various targets. Preliminary results suggest several of the lead mAb candidates are able to prevent Mtb-induced macrophage cell death in vitro. Future studies will attempt to confirm efficacy in vivo after aerosolized infection in mice with mAb-coated Mtb or parenteral administration of mAb(s). Targets of functional mAbs will be determined and these antigens could serve as viable candidates for vaccine development
Critical behaviour of the Rouse model for gelling polymers
It is shown that the traditionally accepted "Rouse values" for the critical
exponents at the gelation transition do not arise from the Rouse model for
gelling polymers. The true critical behaviour of the Rouse model for gelling
polymers is obtained from spectral properties of the connectivity matrix of the
fractal clusters that are formed by the molecules. The required spectral
properties are related to the return probability of a "blind ant"-random walk
on the critical percolating cluster. The resulting scaling relations express
the critical exponents of the shear-stress-relaxation function, and hence those
of the shear viscosity and of the first normal stress coefficient, in terms of
the spectral dimension of the critical percolating cluster and the
exponents and of the cluster-size distribution.Comment: 9 pages, slightly extended version, to appear in J. Phys.
Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study
We study single-chain motion in semidilute solutions of polymers of length N
= 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm.
The crossover length of the transition from Zimm (short lengths and times) to
Rouse dynamics (larger scales) is proportional to the static screening length.
The crossover time is the corresponding Zimm time. Our data indicate Zimm
behavior at large lengths but short times. There is no hydrodynamic screening
until the chains feel constraints, after which they resist the flow:
"Incomplete screening" occurs in the time domain.Comment: 3 figure
The Prospect of Detecting Volcanic Signatures on an ExoEarth Using Direct Imaging
The James Webb Space Telescope (JWST) has provided the first opportunity to
study the atmospheres of terrestrial exoplanets and estimate their surface
conditions. Earth-sized planets around Sun-like stars are currently
inaccessible with JWST however, and will have to be observed using the next
generation of telescopes with direct imaging capabilities. Detecting active
volcanism on an Earth-like planet would be particularly valuable as it would
provide insight into its interior, and provide context for the commonality of
the interior states of Earth and Venus. In this work we used a climate model to
simulate four exoEarths over eight years with ongoing large igneous province
eruptions with outputs ranging from 1.8-60 Gt of sulfur dioxide. The
atmospheric data from the simulations were used to model direct imaging
observations between 0.2-2.0 m, producing reflectance spectra for every
month of each exoEarth simulation. We calculated the amount of observation time
required to detect each of the major absorption features in the spectra, and
identified the most prominent effects that volcanism had on the reflectance
spectra. These effects include changes in the size of the O, O, and
HO absorption features, and changes in the slope of the spectrum. Of these
changes, we conclude that the most detectable and least ambiguous evidence of
volcanism are changes in both O absorption and the slope of the spectrum.Comment: 13 pages, 5 figures, 4 tables, Accepted for publication in AJ
(September 26, 2023
- …