164 research outputs found

    Not just another genome

    Get PDF
    Sequence analysis of the Daphnia pulex genome holds some surprises that could not have been anticipated from what was learned so far from other arthropod genomes. It establishes Daphnia as an eco-genetical model organism par excellence

    Ecological genomics: steps towards unraveling the genetic basis of inducible defenses in Daphnia

    Get PDF
    Little is known about the genetic mechanisms underlying inducible defenses. Recently, the genome of Daphnia pulex, a model organism for defense studies, has been sequenced. Building on the genome information, recent preliminary studies in BMC Developmental Biology and BMC Molecular Biology have assessed gene response profiles in Daphnia under predation pressure. We review the significance of the findings and highlight future research perspectives

    Mesozoic fossils (>145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The timescale of the origins of <it>Daphnia </it>O. F. Mueller (Crustacea: Cladocera) remains controversial. The origin of the two main subgenera has been associated with the breakup of the supercontinent Pangaea. This vicariance hypothesis is supported by reciprocal monophyly, present day associations with the former Gondwanaland and Laurasia regions, and mitochondrial DNA divergence estimates. However, previous multilocus nuclear DNA sequence divergence estimates at < 10 Million years are inconsistent with the breakup of Pangaea. We examined new and existing cladoceran fossils from a Mesozoic Mongolian site, in hopes of gaining insights into the timescale of the evolution of <it>Daphnia</it>.</p> <p>Results</p> <p>We describe new fossils of ephippia from the Khotont site in Mongolia associated with the Jurassic-Cretaceous boundary (about 145 MYA) that are morphologically similar to several modern genera of the family Daphniidae, including the two major subgenera of <it>Daphnia</it>, i.e., <it>Daphnia </it>s. str. and <it>Ctenodaphnia</it>. The daphniid fossils co-occurred with fossils of the predaceous phantom midge (Chaoboridae).</p> <p>Conclusions</p> <p>Our findings indicate that the main subgenera of <it>Daphnia </it>are likely much older than previously known from fossils (at least 100 MY older) or from nuclear DNA estimates of divergence. The results showing co-occurrence of the main subgenera far from the presumed Laurasia/Gondwanaland dispersal barrier shortly after formation suggests that vicariance from the breakup of Pangaea is an unlikely explanation for the origin of the main subgenera. The fossil impressions also reveal that the coevolution of a dipteran predator (Chaoboridae) with the subgenus <it>Daphnia </it>is much older than previously known -- since the Mesozoic.</p

    Combined exome and transcriptome sequencing of non-muscle-invasive bladder cancer: associations between genomic changes, expression subtypes, and clinical outcomes.

    Get PDF
    BACKGROUND: Three-quarters of bladder cancer patients present with early-stage disease (non-muscle-invasive bladder cancer, NMIBC, UICC TNM stages Ta, T1 and Tis); however, most next-generation sequencing studies to date have concentrated on later-stage disease (muscle-invasive BC, stages T2+). We used exome and transcriptome sequencing to comprehensively characterise NMIBCs of all grades and stages to identify prognostic genes and pathways that could facilitate treatment decisions. Tumour grading is based upon microscopy and cellular appearances (grade 1 BCs are less aggressive, and grade 3 BCs are most aggressive), and we chose to also focus on the most clinically complex NMIBC subgroup, those patients with grade 3 pathological stage T1 (G3 pT1) disease. METHODS: Whole-exome and RNA sequencing were performed in total on 96 primary NMIBCs including 22 G1 pTa, 14 G3 pTa and 53 G3 pT1s, with both exome and RNA sequencing data generated from 75 of these individual samples. Associations between genomic alterations, expression profiles and progression-free survival (PFS) were investigated. RESULTS: NMIBCs clustered into 3 expression subtypes with different somatic alteration characteristics. Amplifications of ARNT and ERBB2 were significant indicators of worse PFS across all NMIBCs. High APOBEC mutagenesis and high tumour mutation burden were both potential indicators of better PFS in G3pT1 NMIBCs. The expression of individual genes was not prognostic in BCG-treated G3pT1 NMIBCs; however, downregulated interferon-alpha and gamma response pathways were significantly associated with worse PFS (adjusted p-value < 0.005). CONCLUSIONS: Multi-omic data may facilitate better prognostication and selection of therapeutic interventions in patients with G3pT1 NMIBC. These findings demonstrate the potential for improving the management of high-risk NMIBC patients and warrant further prospective validation

    Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    Get PDF
    Background: Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh). Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results: We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S) for Glutamic acid (F) at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions: Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive

    Inducible Defenses with a "Twist": Daphnia barbata Abandons Bilateral Symmetry in Response to an Ancient Predator

    Get PDF
    Predation is one of the most important drivers of natural selection. In consequence a huge variety of anti-predator defenses have evolved in prey species. Under unpredictable and temporally variable predation pressure, the evolution of phenotypically plastic defensive traits is favored. These "inducible defenses", range from changes in behavior, life history, physiology to morphology and can be found in almost all taxa from bacteria to vertebrates. An important group of model organisms in ecological, evolutionary and environmental research, water fleas of the genus Daphnia (Crustacea: Cladocera), are well known for their ability to respond to predators with an enormous variety of inducible morphological defenses. Here we report on the "twist", a body torsion, as a so far unrecognized inducible morphological defense in Daphnia, expressed by Daphnia barbata exposed to the predatory tadpole shrimp Triops cancriformis. This defense is realized by a twisted carapace with the helmet and the tail spine deviating from the body axis into opposing directions, resulting in a complete abolishment of bilateral symmetry. The twisted morphotype should considerably interfere with the feeding apparatus of the predator, contributing to the effectiveness of the array of defensive traits in D. barbata. As such this study does not only describe a completely novel inducible defense in the genus Daphnia but also presents the first report of a free living Bilateria to flexibly respond to predation risk by abandoning bilateral symmetry

    The Porcelain Crab Transcriptome and PCAD, the Porcelain Crab Microarray and Sequence Database

    Get PDF
    BACKGROUND: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes. METHODOLOGY/PRINCIPAL FINDINGS: A set of approximately 30K unique sequences (UniSeqs) representing approximately 19K clusters were generated from approximately 98K high quality ESTs from a set of tissue specific non-normalized and mixed-tissue normalized cDNA libraries from the porcelain crab Petrolisthes cinctipes. Homology for each UniSeq was assessed using BLAST, InterProScan, GO and KEGG database searches. Approximately 66% of the UniSeqs had homology in at least one of the databases. All EST and UniSeq sequences along with annotation results and coordinated cDNA microarray datasets have been made publicly accessible at the Porcelain Crab Array Database (PCAD), a feature-enriched version of the Stanford and Longhorn Array Databases. CONCLUSIONS/SIGNIFICANCE: The EST project presented here represents the third largest sequencing effort for any crustacean, and the largest effort for any crab species. Our assembly and clustering results suggest that our porcelain crab EST data set is equally diverse to the much larger EST set generated in the Daphnia pulex genome sequencing project, and thus will be an important resource to the Daphnia research community. Our homology results support the pancrustacea hypothesis and suggest that Malacostraca may be ancestral to Branchiopoda and Hexapoda. Our results also suggest that our cDNA microarrays cover as much of the transcriptome as can reasonably be captured in EST library sequencing approaches, and thus represent a rich resource for studies of environmental genomics

    Diversity in the Reproductive Modes of European Daphnia pulicaria Deviates from the Geographical Parthenogenesis

    Get PDF
    10 páginas, 5 figuras, 3 tablas.Background: Multiple transitions to obligate parthenogenesis have occurred in the Daphnia pulex complex in North America. These newly formed asexual lineages are differentially distributed being found predominantly at high latitudes. This conforms to the rule of geographical parthenogenesis postulating prevalence of asexuals at high latitudes and altitudes. While the reproductive mode of high-latitude populations is relatively well studied, little is known about the reproduction mode in high altitudes. This study aimed to assess the reproductive mode of Daphnia pulicaria, a species of the D. pulex complex, from high altitude lakes in Europe. Methodology/Principal Findings: Variation at eight microsatellite loci revealed that D. pulicaria from the High Tatra Mountains (HTM) had low genotype richness and showed excess of heterozygotes and significant deviations from Hardy- Weinberg expectations, and was thus congruent with reproduction by obligate parthenogenesis. By contrast, populations from the Pyrenees (Pyr) were generally in Hardy-Weinberg equilibrium and had higher genotypic richness, suggesting that they are cyclic parthenogens. Four lakes from lowland areas (LLaP) had populations with an uncertain or mixed breeding mode. All D. pulicaria had mtDNA ND5 haplotypes of the European D. pulicaria lineage. Pyr were distinct from LLaP and HTM at the ND5 gene. By contrast, HTM shared two haplotypes with LLaP and one with Pyr. Principal Coordinate Analysis of the microsatellite data revealed clear genetic differentiation into three groups. HTM isolates were intermediate to Pyr and LLaP, congruent with a hybrid origin. Conclusion/Significance: Inferred transitions to obligate parthenogenesis have occurred only in HTM, most likely as a result of hybridizations. In contrast to North American populations, these transitions do not appear to involve meiosis suppressor genes and have not been accompanied by polyploidy. The absence of obligate parthenogenesis in Pyr, an environment highly similar to the HTM, may be due to the lack of opportunities for hybridization.Peer reviewe

    Eukaryote DIRS1-like retrotransposons: an overview

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DIRS1-like elements compose one superfamily of tyrosine recombinase-encoding retrotransposons. They have been previously reported in only a few diverse eukaryote species, describing a patchy distribution, and little is known about their origin and dynamics. Recently, we have shown that these retrotransposons are common among decapods, which calls into question the distribution of DIRS1-like retrotransposons among eukaryotes.</p> <p>Results</p> <p>To determine the distribution of DIRS1-like retrotransposons, we developed a new computational tool, ReDoSt, which allows us to identify well-conserved DIRS1-like elements. By screening 274 completely sequenced genomes, we identified more than 4000 DIRS1-like copies distributed among 30 diverse species which can be clustered into roughly 300 families. While the diversity in most species appears restricted to a low copy number, a few bursts of transposition are strongly suggested in certain species, such as <it>Danio rerio </it>and <it>Saccoglossus kowalevskii</it>.</p> <p>Conclusion</p> <p>In this study, we report 14 new species and 8 new higher taxa that were not previously known to harbor DIRS1-like retrotransposons. Now reported in 61 species, these elements appear widely distributed among eukaryotes, even if they remain undetected in streptophytes and mammals. Especially in unikonts, a broad range of taxa from Cnidaria to Sauropsida harbors such elements. Both the distribution and the similarities between the DIRS1-like element phylogeny and conventional phylogenies of the host species suggest that DIRS1-like retrotransposons emerged early during the radiation of eukaryotes.</p
    corecore