9 research outputs found

    Aspiration of biological viscoelastic drops

    Full text link
    Spherical cellular aggregates are in vitro systems to study the physical and biophysical properties of tissues. We present a novel approach to characterize the mechanical properties of cellular aggregates using micropipette aspiration technique. We observe an aspiration in two distinct regimes, a fast elastic deformation followed by a viscous flow. We develop a model based on this viscoelastic behavior to deduce the surface tension, viscosity, and elastic modulus. A major result is the increase of the surface tension with the applied force, interpreted as an effect of cellular mechanosensing.Comment: 4 pages, 4 figures

    A new approach to determine tensile stress-strain evolution in semi-solid state at near-solidus temperature of aluminum alloys

    Get PDF
    Accurate determination of the materials’ strength and ductility in the semi-solid state at near-solidus temperatures is essential, but it remains a challenging task. This study aimed to develop a new method to determine the stress-strain evolution in the semi-solid state of aluminum alloys within the Gleeble 3800 unit. Stress evolution was determined by the newly developed “L-gauge” method, which converted the displacement of the “restrained” jaw, measured using an L-gauge, into the force. This method gives the possibility to determine the flow stress more accurately, especially for the very low stress rang (1–10 MPa) in the semi-solid state at near-solidus temperatures. The digital image correlation technique implemented in the Gleeble unit allowed effective measurement of the heterogeneous strain fields evolving within the specimen under tensile loading. Therefore, the stress-strain curves measured in the semi-solid state help to better understand the alloy’s susceptibility to hot tearing. The results of an AA6111 alloy under different liquid fractions (2.8% at 535 °C and 5.8% at 571 °C) were demonstrated. The reliable stress-strain data and heterogenous strain distribution are beneficial to develop the thermomechanical models and hot-tearing criteria

    Caractérisation de la fraction solide dans les lopins semi-solides produits par le procédé SEED

    Get PDF
    Depuis quelques annĂ©es, les recherches qui portent sur les procĂ©dĂ©s de mise en forme par voie semi-solide ne cessent d'augmenter. Cette popularitĂ© s'explique par les nombreux avantages que procure ce type de moulage par rapport au moulage traditionnel en phase liquide. Le procĂ©dĂ© SEED (Swirled Enthalpy Equilibration Device) est une mĂ©thode de mise en forme de l'aluminium semi-solide actuellement dĂ©veloppĂ©e par Alcan International Limited et le Centre des technologies de l'aluminium. Ce procĂ©dĂ© utilise la masse thermique d'un creuset pour absorber une quantitĂ© dĂ©finie de chaleur d'un lopin pour qu'il atteigne la tempĂ©rature et la fraction solide voulues. L'avantage principal du procĂ©dĂ© SEED est qu'il ne requiert pas de contrĂŽle de tempĂ©ratures sophistiquĂ©. Le transfert de chaleur peut ĂȘtre aisĂ©ment contrĂŽlĂ© par la masse et le matĂ©riau du creuset. L'objectif des travaux rĂ©alisĂ©s dans le cadre de cette maĂźtrise concerne l'Ă©volution de la fraction solide en fonction de la tempĂ©rature dans les lopins semi-solides produits par le procĂ©dĂ© SEED. Comme les lopins sont destinĂ©s au moulage sous pression, il est essentiel de bien connaĂźtre les propriĂ©tĂ©s d'Ă©coulement de la pĂąte pour obtenir des piĂšces ayant de bonnes propriĂ©tĂ©s mĂ©caniques. Or, les propriĂ©tĂ©s rhĂ©ologiques de la pĂąte dĂ©pendent fortement de la fraction solide, d'oĂč l'intĂ©rĂȘt de la caractĂ©riser. Deux modĂšles thĂ©oriques sont frĂ©quemment utilisĂ©s pour connaĂźtre la fraction solide en fonction de la tempĂ©rature, soit le modĂšle de Scheil et celui de solidification Ă  l'Ă©quilibre. Par contre, ces modĂšles demeurent des approximations et il est impossible de dire jusqu'Ă  quel point l'Ă©volution de la fraction solide dans les lopins semi-solides produits par le procĂ©dĂ© SEED concorde avec ces modĂšles. Pour caractĂ©riser l'Ă©volution de la fraction solide de l'aluminium, quatre approches ont Ă©tĂ© utilisĂ©es. Le logiciel Thermo-Cale a d'abord Ă©tĂ© utilisĂ© pour tracer l'Ă©volution de Penthalpie et de la fraction solide pour un alliage d'aluminium A356 en utilisant les modĂšles de Scheil et de solidification Ă  l'Ă©quilibre. Ensuite, Dictra a Ă©tĂ© utilisĂ© pour tracer les mĂȘmes courbes, mais cette fois en imposant un taux de refroidissement et en basant les calculs sur la vitesse de diffusion des atomes dans l'alliage. Les rĂ©sultats de ses calculs ont permis d'obtenir les courbes thĂ©oriques d'enthalpie et de fraction solide prĂ©dites par les modĂšles. Deux types de calorimĂštre ont Ă©tĂ© utilisĂ©s. D'abord, un calorimĂštre Ă  pression constante a Ă©tĂ© fabriquĂ© pour connaĂźtre la quantitĂ© de chaleur contenue dans un lopin. Ensuite, un calorimĂštre Ă  balayage diffĂ©rentiel a Ă©tĂ© utilisĂ© pour mesurer l'Ă©volution de l'Ă©nergie lors de la rĂ©action de solidification d'une petite masse d'aluminium. Ces mesures ont ensuite permis de connaĂźtre la fraction solide pendant la rĂ©action. Les rĂ©sultats obtenus concordent bien avec les prĂ©dictions fournies par le logiciel Thermo-Cale. Une premiĂšre mĂ©thode expĂ©rimentale directement appliquĂ©e au procĂ©dĂ© SEED a ensuite Ă©tĂ© employĂ©e. Cette dĂ©marche consiste Ă  prĂ©lever des Ă©chantillons de pĂąte semisolide Ă  diffĂ©rents moments lors d'un cycle de production des lopins et Ă  les refroidir trĂšs rapidement afin de figer la microstructure. DiffĂ©rentes mĂ©thodes d'Ă©chantillonnage ont Ă©tĂ© testĂ©es afin d'identifier la dĂ©marche la plus efficace et celle permettant la solidification la plus rapide. Plusieurs obstacles ont Ă©tĂ© rencontrĂ©s et il a Ă©tĂ© trĂšs difficile d'obtenir des Ă©chantillons reprĂ©sentatifs de la pĂąte. L'Ă©tude de la microstructure par analyse d'image des Ă©chantillons permet normalement de quantifier la fraction solide. Il s'est par contre avĂ©rĂ© trĂšs difficile de distinguer la phase primaire qui s'est solidifiĂ©e en cours de procĂ©dĂ© de la partie liquide qui s'est solidifiĂ©e pendant la trempe. La principale raison qui explique les difficultĂ©s rencontrĂ©es est associĂ©e Ă  la morphologie et la taille des particules solides qui, dĂ» Ă  un manque de temps de maintien dans la rĂ©gion semi-solide, n'ont pas eu le temps d'Ă©voluer en forme de globules et de grossir suffisamment pour se distinguer facilement de la phase secondaire solidifiĂ©e pendant la trempe. La fraction solide de la pĂąte n'a donc pas pu ĂȘtre quantifiĂ©e par cette mĂ©thode. L'analyse thermique a finalement permis de connaĂźtre l'Ă©volution de la fraction solide de la pĂąte produite par le procĂ©dĂ© SEED. Des mesures de tempĂ©ratures provenant de thermocouples insĂ©rĂ©s dans l'aluminium semi-solide et Ă  la surface du creuset lors de la solidification des lopins ont d'abord Ă©tĂ© prises. Ensuite, un bilan Ă©nergĂ©tique a permis de connaĂźtre l'Ă©volution de l'enthalpie du systĂšme. Finalement, la fraction solide a pu ĂȘtre dĂ©terminĂ©e en faisant l'hypothĂšse que la fraction solidifiĂ©e est proportionnelle Ă  la fraction d'Ă©nergie dĂ©gagĂ©e. Il est important de souligner qu'habituellement l'analyse thermique utilise le concept de courbe de base pour isoler l'Ă©nergie de la rĂ©action de solidification. L'analyse thermique dĂ©veloppĂ©e dans le cadre de ces travaux utilise une approche complĂštement nouvelle qui s'affranchit de l'utilisation de la courbe de base. Les rĂ©sultats obtenus par analyse thermique ont permis de constater que l'Ă©volution de la fraction solide concorde avec les prĂ©dictions du modĂšle de Scheil. Finalement, une dĂ©marche permettant de prĂ©dire la fraction solide aprĂšs le drainage dans le procĂ©dĂ© SEED a Ă©tĂ© dĂ©veloppĂ©e. Suite aux rĂ©sultats obtenus par analyse thermique, il est possible d'utiliser la relation de Scheil pour prĂ©dire la fraction solide des lopins produits par le procĂ©dĂ© SEED avant le drainage. Par ailleurs, la pĂ©riode de drainage est plus complexe et rien ne permet d'affirmer que la relation de Scheil s'applique toujours. Pendant le drainage, trois facteurs contribuent Ă  faire augmenter la fraction solide, soit la masse drainĂ©e, la diminution de la tempĂ©rature et la modification de la composition du lopin. Deux cas limites thĂ©oriques basĂ©s sur des hypothĂšses diffĂ©rentes ont Ă©tĂ© Ă©tudiĂ©s pour calculer l'intervalle dans lequel la fraction solide finale de la pĂąte se trouve

    Impact of the main casting process parameters on floating crystals in Al alloy DC-Cast ingots

    No full text
    Aluminium alloy DC-cast ingots are widely used as flat rolled products in building, construction and automotive applications. Some of these applications require a very uniform, high quality surface appearance which is closely related to the original as-cast microstructure. Inhomogeneity in the cast microstructure such as floating crystals negatively impacts the surface quality of the final product. In this study, the impact of the metal level, metal temperature, type of distributor bag and use of a skim dam were assessed. These parameters must be properly adjusted in order to obtain a homogeneous grain structure free of floating crystals

    Temperature dependence of elastic properties of Al-Mg-Si direct-Chill-cast AA6111 alloy at near-solidus temperatures

    No full text
    The elastic properties of the Al-Mg-Si direct-chill-cast AA6111 alloy were determined during the unloading stage of the cyclic tensile test over a wide range of temperatures (25-550 °C), and particular attention was paid to high temperatures near the solidus. Young’s modulus was calculated based on macroscopic and localized strains, which were measured using an extensometer and the digital image correlation (DIC) method. Poisson's ratio was determined based on the localized axial and lateral strains measured using DIC method. Over the entire temperature range, the DIC method demonstrated a higher stability in its accuracy with increasing temperature than that using the extensometer. A sharp change in the slope of Young's modulus as a function of the temperature, starting from the solidus temperature, was detected using the DIC method. Correlations between Young's modulus and temperature in both the solid and semi-solid states were established. Poisson’s ratio as a function of the temperature exhibited a dramatic change near the solidus temperature because of the presence of liquid pockets. The onset brittle temperature of AA6111 alloy in the semi-solid state was estimated to be 550 °C based on the critical values of Poisson’s ratio and the shear modulus to bulk modulus ratio

    Effect of chemical composition on the semisolid tensile properties and hot tearing susceptibility of AA6111 DC cast alloys

    No full text
    The semisolid tensile properties of two AA6111 direct-chill cast alloys (A and B) have been studied. The Cu, Mn, and Si contents of alloy A are higher than those of alloy B. The microstructures of the alloys were analyzed before tensile testing and after tensile fracture. Isothermal holding was performed in the temperatures of 510, 520, 535, 552, 564 and 580 °C for 1 h to study porosity/void formation in both alloys. Tensile tests were conducted near the solidus temperature in the temperature range of 450–580 °C at a strain rate of 10–4 s−1. The strain during tensile testing was measured using the digital image correlation method to obtain reliable stress–strain curves. The results revealed that the tensile strengths of the alloys gradually decreased to zero with increasing temperature to arrive at the zero-stress temperature, whereas the strains at the failure decreased sharply with increasing temperature until zero-ductility temperature (ZDT) was reached. Moreover, the failure strain of alloy B at any given testing temperature was higher than that of alloy A. Non-mechanical and mechanical hot-tearing criteria were used to study the hot-tearing susceptibilities (HTSs) of the alloys. Considering the mechanical criterion, the ZDT and brittle temperature range of alloy A were lower and larger than those of alloy B, respectively, indicating that the HTS index of alloy A was higher than that of alloy B

    Squeezing and Detachment of Living Cells

    Get PDF
    The interaction of living cells with their environment is linked to their adhesive and elastic properties. Even if the mechanics of simple lipid membranes is fairly well understood, the analysis of single cell experiments remains challenging in part because of the mechanosensory response of cells to their environment. To study the mechanical properties of living cells we have developed a tool that borrows from micropipette aspiration techniques, atomic force microscopy, and the classical Johnson-Kendall-Roberts test. We show results from a study of the adhesion properties of living cells, as well as the elastic response and relaxation. We present models that are applied throughout the different stages of an experiment, which indicate that the contribution of the different components of the cell are active at various stages of compression, retraction, and detachment. Finally, we present a model that attempts to elucidate the surprising logarithmic relaxation observed when the cell is subjected to a given deformation
    corecore