11 research outputs found

    Inhibition of Bromodomain and Extraterminal Domain (BET) Proteins by JQ1 Unravels a Novel Epigenetic Modulation to Control Lipid Homeostasis

    Get PDF
    The homeostatic control of lipid metabolism is essential for many fundamental physiological processes. A deep understanding of its regulatory mechanisms is pivotal to unravel prospective physiopathological factors and to identify novel molecular targets that could be employed to design promising therapies in the management of lipid disorders. Here, we investigated the role of bromodomain and extraterminal domain (BET) proteins in the regulation of lipid metabolism. To reach this aim, we used a loss-of-function approach by treating HepG2 cells with JQ1, a powerful and selective BET inhibitor. The main results demonstrated that BET inhibition by JQ1 efficiently decreases intracellular lipid content, determining a significant modulation of proteins involved in lipid biosynthesis, uptake and intracellular trafficking. Importantly, the capability of BET inhibition to slow down cell proliferation is dependent on the modulation of cholesterol metabolism. Taken together, these data highlight a novel epigenetic mechanism involved in the regulation of lipid homeostasis

    Bromodomain and extraterminal domain (BET) protein inhibition hinders glioblastoma progression by inducing autophagy-dependent differentiation

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant primary brain tumor, and it is characterized by a high recurrence incidence and poor prognosis due to the presence of a highly heterogeneous mass of stem cells with self-renewal capacity and stemness maintenance ability. In recent years, the epigenetic landscape of GBM has been explored and many epigenetic alterations have been investigated. Among the investigated epigenetic abnormalities, the bromodomain and extra-terminal domain (BET) chromatin readers have been found to be significantly overexpressed in GBM. In this work, we investigated the effects of BET protein inhibition on GBM cell reprogramming. We found that the pan-BET pharmacological inhibitor JQ1 was able to promote a differentiation program in GBM cells, thus impairing cell proliferation and enhancing the toxicity of the drug Temozolomide (TMZ). Notably, the pro-differentiation capability of JQ1 was prevented in autophagy-defective models, suggesting that autophagy activation is necessary for BET protein activity in regulating glioma cell fate. Given the growing interest in epigenetic therapy, our results further support the possibility of introducing a BET-based approach in GBM clinical management

    mTOR inhibition leads to SRC-mediated EGFR internalisation and degradation in glioma cells

    Get PDF
    Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration

    mTOR inhibition leads to SRC-mediated EGFR internalisation and degradation in glioma cells

    Get PDF
    Epidermal Growth Factor receptor (EGFR) is a tyrosine kinase receptor widely expressed on the surface of numerous cell types, which activates several downstream signalling pathways involved in cell proliferation, migration and survival. EGFR alterations, such as overexpression or mutations, have been frequently observed in several cancers, including glioblastoma (GBM), and are associated to uncontrolled cell proliferation. Here we show that the inhibition of mammalian target of Rapamycin (mTOR) mediates EGFR delivery to lysosomes for degradation in GBM cells, independently of autophagy activation. Coherently with EGFR internalisation and degradation, mTOR blockade negatively affects the mitogen activated protein/extracellular signal-regulated kinase (MAPK)/ERK pathway. Furthermore, we provide evidence that Src kinase activation is required for EGFR internaliation upon mTOR inhibition. Our results further support the hypothesis that mTOR targeting may represent an effective therapeutic strategy in GBM management, as its inhibition results in EGFR degradation and in proliferative signal alteration

    NGF Modulates Cholesterol Metabolism and Stimulates ApoE Secretion in Glial Cells Conferring Neuroprotection against Oxidative Stress

    No full text
    Cholesterol plays a crucial role in the brain, where its metabolism is particularly regulated by astrocytic activity. Indeed, adult neurons suppress their own cholesterol biosynthesis and import this sterol through ApoE‐rich particles secreted from astrocytes. Recent evidence suggests that nerve growth factor (NGF) may exert neurotrophic activity by influencing cell metabolism. Nevertheless, the effect of NGF on glial cholesterol homeostasis has still not been elucidated. Thus, the aim of this project is to assess whether NGF could influence cholesterol metabolism in glial cells. To reach this objective, the U373 astrocyte‐derived cell line was used as an experimental model. Immunoblot and ELISA analysis showed that proteins and enzymes belonging to the cholesterol metabolism network were increased upon NGF treatment in glial cells. Furthermore, NGF significantly increased ApoE secretion and the amount of extracellular cholesterol in the culture medium. Co‐culture and U373‐ conditioned medium experiments demonstrated that NGF treatment efficiently counteracted rotenone‐mediated cytotoxicity in N1E‐115 neuronal cells. Conversely, neuroprotection mediated by NGF treatment was suppressed when N1E‐115 were co‐cultured with ApoE‐silenced U373 cells. Taken together, these data suggest that NGF controls cholesterol homeostasis in glial cells. More importantly, NGF exerts neuroprotection against oxidative stress, which is likely associated with the induction of glial ApoE secretion

    Neurotrophins as key regulators of cell metabolism: Implications for cholesterol homeostasis

    No full text
    Neurotrophins constitute a family of growth factors initially characterized as predominant mediators of nervous system development, neuronal survival, regeneration and plasticity. Their biological activity is promoted by the binding of two different types of receptors, leading to the generation of multiple and variegated signaling cascades in the target cells. Increasing evidence indicates that neurotrophins are also emerging as crucial regulators of metabolic processes in both neuronal and non-neuronal cells. In this context, it has been reported that neurotrophins affect redox balance, autophagy, glucose homeostasis and energy expenditure. Additionally, the trophic support provided by these secreted factors may involve the regulation of cholesterol metabolism. In this review, we examine the neurotrophins' signaling pathways and their effects on metabolism by critically discussing the most up-to-date information. In particular, we gather experimental evidence demonstrating the impact of these growth factors on cholesterol metabolism

    Bromodomain and Extra-Terminal Proteins in Brain Physiology and Pathology: BET-ing on Epigenetic Regulation

    No full text
    BET proteins function as histone code readers of acetylated lysins that determine the positive regulation in transcription of genes involved in cell cycle progression, differentiation, inflammation, and many other pathways. In recent years, thanks to the development of BET inhibitors, interest in this protein family has risen for its relevance in brain development and function. For example, experimental evidence has shown that BET modulation affects neuronal activity and the expression of genes involved in learning and memory. In addition, BET inhibition strongly suppresses molecular pathways related to neuroinflammation. These observations suggest that BET modulation may play a critical role in the onset and during the development of diverse neurodegenerative and neuropsychiatric disorders, such as Alzheimer’s disease, fragile X syndrome, and Rett syndrome. In this review article, we summarize the most recent evidence regarding the involvement of BET proteins in brain physiology and pathology, as well as their pharmacological potential as targets for therapeutic purposes

    ProNGF/p75NTR Axis Drives Fiber Type Specification by Inducing the Fast-Glycolytic Phenotype in Mouse Skeletal Muscle Cells

    No full text
    Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders
    corecore