12 research outputs found

    Relationship between the occurrence of filamentous bacteria on Bathymodiolus azoricus shell and the physiological and toxicological status of the vent mussel

    Get PDF
    En libre-accès sur Archimer : http://archimer.ifremer.fr/doc/2009/publication-6821.pdfInternational audienceThe edifice walls of the Eiffel Tower hydrothermal vent site (Mid-Atlantic Ridge, Lucky Strike vent field) are populated with dense communities of dual symbioses harboring vent mussel Bathymodiolus azoricus, some of which are covered by white filamentous mats belonging to sulfur-oxidizing bacteria. Mussels were collected in both the presence and absence of the filamentous bacteria. A sample of the filamentous bacteria was collected and water measurements of temperature, CH4 and H2S were recorded at the collection area. The whole soft tissues were analyzed for total lipid, carbohydrate and total protein. Metallothioneins and metals (Cu, Fe and Zn) levels were determined in the major organs. The results showed no significant physiological and toxicological evidence that emphasizes the influence of associated sulfur-oxidizing filamentous bacteria on B. azoricus mussel shells. However, B. azoricus mussel seems to be well adapted to the assorted physico-chemical characteristics from the surrounding environment since it is able to manage the constant fluctuation of physico-chemical compounds

    Model outputs: Modelling the dispersion of Seafloor Massive Sulphide mining plumes in the Mid Atlantic Ridge around the Azores

    No full text
    It is increasingly recognised that deep-sea mining of seafloor massive sulphides (SMS) could become an important source of mineral resources. These operations will remove the targeted substrate and produce potentially sediment toxic plumes from in situ seabed excavation and from the return water pumped back down to the seafloor. However, the spatial extent of the impacts of deep-sea mining plumes is still uncertain because few field experiments and models of plumes dispersion have been conducted. Morato et al. (2022) used three-dimensional hydrodynamic models of the Azores region together with a theoretical commercial mining operation of polymetallic SMS to simulate the potential dispersal of sediment plumes originating from different phases of mining operations and to assess the magnitude of potential impacts. The areas used in the modelling work were (from North to South): Cavala seamount (38.265, -30.710), Lucky Strike Hole (37.503, -31.955), Menez Hom (37.109, -32.618), Famous (37.001, -33.039), Saldanha (36.658, -33.420), and Rainbow (36.262 -33.824). The datasets published here contain all the model outputs, namely for 1) the in situ excavation sediment plume, 2) the return water discharge plume, and 3) the return sediments discharge plume: 1) The concentration of solids and of the discharge water in each horizontal 2-dimensional space cell is calculated as the maximum concentration in the 50 vertical layers of each 2-dimensional cell, for each output time step (3 hours), averaged over all time steps during each trimester and during a 12-months simulation. 1.1) Concentration of sediments produced during the in situ excavation sediment plume calculated as the maximum concentration in the 50 vertical layers of each 2-dimensional cell, for each output time step (3 hours), averaged over all time steps during a 12-months simulation. Sediments were composed of six classes of different particle diameter (0-10 μm, 10-50 μm, 50-100 μm, 100-200 μm, 200-2,000 μm, and >2,000 μm), an average particle density of 3,780 kg·m-3, and resultant settling velocities ranging from 75.1 cm·s-1 to 0.002 cm·s-1. 1.2) Concentration of return water discharge plume (shown in dilution folds) in six study areas calculated as the maximum concentration in the 50 vertical layers of each 2-dimensional cell, for each output time step (3 hours), averaged over all time steps during a 12-months simulation and assuming a control temperature as the annual minimum temperature of each location (T1). The salinity of discharge was calculated assuming the MOHID salinity of 83.3% surface water and 16.7% of seafloor water. 1.3) Concentration of sediments in the return sediment discharge plume, calculated as the maximum concentration in the 50 vertical layers of each 2-dimensional cell, for each output time step (3 hours), averaged over all time steps during a 12-months simulation. The average particle diameter was assumed to be 4 µm with an average particle density of 3,780 kg·m-3 and a resultant settling velocity of 0.002 cm·s-1. 2) The proportion of simulated time (temporal frequency) that a specific 2-dimensional space contained plume concentrations higher than the adopted thresholds; 1.2 mg·L-1 for sediment solids and 5,000 fold dilution for discharge water. Those cells whose temporal frequency above the thresholds was greater than 50%, i.e. 6 months out of 12 months, were considered as cells with persistent plumes. 2.1) Proportion of simulated time (temporal frequency) that a specific a 2-dimensional space cell, in six study areas, contained in situ excavation sediment plume above a 1.2 mg·L-1 concentration threshold, during a 12-months simulation, assuming six classes of particle diameter (0-10 μm, 10-50 μm, 50-100 μm, 100-200 μm, 200-2,000 μm, and >2,000 μm), an average particle density of 3,780 kg·m-3, and resultant settling velocities ranging from 75.1 cm·s-1 to 0.002 cm·s-1. 2.2) Proportion of simulated time (temporal frequency) that a specific 2-dimensional space, in six study areas, contained return water discharge plume concentrations higher than the adopted thresholds (i.e., 5,000 fold dilution), during a 12-months simulation and assuming a control temperature as the annual minimum temperature of each location (T1). The salinity of discharge was calculated assuming the MOHID salinity of 83.3% surface water and 16.7% of seafloor water. 2.3) Proportion of simulated time (temporal frequency) that a specific 2-dimensional space cell, in six study areas, contained return sediments discharge plume above a 1.2 mg·L-1 concentration threshold, during a 12-months simulation, assuming an average particle diameter of 4 µm, an average particle density of 3,780 kg·m-3, and a resultant settling velocity of 0.002 cm·s-1. 3) In addition to the thresholds and targets described above, the datasets also present the model results for Cavala seamount and Lucky Strike Hole against other thresholds: 5 mg·L-1, 10 mg·L-1 and 25 mg·L-1 for sediments and 1,000, 600, 300 and 200 fold dilution for discharge water. 4) Seasonal variations in the model outputs for plumes dispersal are also presented for Cavala seamount and Lucky Strike Hole by computing the probability of concentration above thresholds for four periods of three months (January-March, April-June, July-September, and October-December). In these scenarios, the model run duration was approximately 90 days. 5) The sediment thickness of the settled sediments from the discharge sediment and excavation. 5.1) Bottom thickness of settled sediments produced during the in situ excavation sediment plume assuming six classes of particle diameter (0-10 μm, 10-50 μm, 50-100 μm, 100-200 μm, 200-2,000 μm, and >2,000 μm), an average particle density of 3,780 kg·m-3, and resultant settling velocities ranging from 75.1 cm·s-1 to 0.002 cm·s-1. The duration of the simulation is one year. 5.2) Bottom thickness of settled sediments from the return sediment discharge plume modelled assuming an average particle diameter of 4 µm, an average particle density of 3,780 kg·m-3, and a resultant settling velocity of 0.002 cm·s-1. The duration of the simulation is one year

    Metal concentrations in seawater of an ex-situ experiment with the cold-water octocoral Dentomuricea aff. meteor

    No full text
    We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. Trace elements (Co, Cu, Mn) released from the resuspension of PMS particles to the water column in each aquaria were determined using passive sampling (DGT® Research Ltd) coupled with inductively coupled plasma mass spectrometry (ICPMS). DGT-holders were deployed in all aquaria and replaced every week (days 6, 13, 20, 27)

    Gene expression by the cold-water octocoral Dentomuricea aff. meteor during an ex-situ experiment testing the effects of mining-generated sediment plumes

    No full text
    We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. Gene expression profiles in D. aff. meteor were used to evaluate the physiological pathways involved in the response to exposure to PMS and quartz particles. Coral fragments were collected from each treatment at times 0, 3, and 13 days and for the control and quartz treatments also at time 27 days. The study targeted genes involved in cellular stress and antioxidant reaction system (heat shock protein, superoxide dismutase, ferritin), cell structure/integrity (α-carbonic anhydrase, receptor-type protein tyrosine phosphatase) and immune responses (toll-like receptor, lysozyme, rel homology domain, ferritin)

    Metabolic rates of the cold-water octocoral Dentomuricea aff. meteor during an ex-situ experiment in the Azores

    No full text
    We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. Integrated measurements of coral respiration and ammonium release rates were carried out by closed-chamber incubation in cylindrical acrylic chambers on days 0, 13 and 27 of the experiment using an oxygen meter Fibox4 with a PSt3 sensor (PreSens, Germany). Coral respiration and excretion rates were normalized to the coral skeletal surface area

    Aquarium monitoring of an ex-situ experiment involving the cold-water octocoral Dentomuricea aff. meteor

    No full text
    We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. Seawater physical-chemical parameters were measured daily in each aquarium. Seawater salinity was measured with a S30 SevenEasy™ conductivity meter, pH and temperature with a glass electrode (Crison pH 25+), and oxygen with a Fibox4 (PreSens) with a Oxygen Dipping Probe DP-PSt3. Seawater samples for inorganic nutrient analyses were collected on times 0 (immediately before the start of the experiment), and once a week on days 6, 13, 20 and 27 of the experiment and determined using a colorimetric autoanalyzer Sanplus with segmented flow

    Results of an ex-situ experiment testing the effects of mining-generated sediment plumes on the cold-water octocoral Dentomuricea aff. meteor in the Azores

    No full text
    We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Corals were collected from the summit of Condor Seamount (Azores, NE Atlantic) at depths between 185-210 m in August 2014. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. PMS particles were obtained by grinding PMS inactive chimney rocks collected at the hydrothermal vent field Lucky Strike. Both particle types were delivered at a concentration of 25 mg L-1. The putative effects of PMS particles were evaluated through measurements of the coral physiological responses at the levels of the organism (oxygen consumption, ammonium excretion), tissue (bioaccumulation of metals) and cell (enzyme activity and gene expression)

    Stress biomarkers in the cold-water octocoral Dentomuricea aff. meteor during an ex-situ experiment in the Azores

    No full text
    We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. Antioxidant stress related biomarkers (glutathione S−transferase, superoxide dismutase, catalase, malondialdehyde) in D. aff. meteor tissues were used to evaluate the degree of cellular stress induced by exposure to PMS and quartz particles at times 0 and 13 days in all treatments and from the control and quartz treatments also at time 27 days of the experiment

    Suspended sediment concentrations of an ex-situ experiment with the cold-water octocoral Dentomuricea aff. meteor in the Azores

    No full text
    We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. The concentration of suspended PMS and quartz particles in each treatment was measured during an exposure period of 4 hours. Suspended particle concentrations were measured one minute after particle addition, and then at intervals of 5, 15, 30 minutes, 1 hour, 2 hours and 4 hours after particle addition in the PMS and quartz particle treatments and in control aquaria with no particle addition

    Metal bioaccumulation by the cold-water octocoral Dentomuricea aff. meteor during an ex-situ experiment testing the effects of mining-generated sediment plumes

    No full text
    We report the results of an aquaria-based experiment testing the effects of suspended particles generated during potential mining activities, on a common habitat-building coral species in the Azores, Dentomuricea aff. meteor. Coral fragments were maintained in 10-L aquaria and exposed to three experimental treatments for a period of four weeks at the DeepSeaLab aquaria facilities (Okeanos-University of the Azores): (1) control conditions (no added sediments); (2) suspended polymetallic sulphide (PMS) particles; (3) suspended quartz particles. Trace elements in the tissues and skeletons of corals at the end of the experiment were quantified by a quadrupole ICPMS (Thermo Elemental, X-Series). The metal concentrations in coral tissues are given in microgram per gram of dry weight tissue (μg g-1; dw)
    corecore