15 research outputs found

    Inhibition of Dermatophyte Fungi by Australian Jarrah Honey.

    Full text link
    Superficial dermatophyte infections, commonly known as tineas, are the most prevalent fungal ailment and are increasing in incidence, leading to an interest in alternative treatments. Many floral honeys possess antimicrobial activity due to high sugar, low pH, and the production of hydrogen peroxide (H2O2) from the activity of the bee-derived enzyme glucose oxidase. Australian jarrah (Eucalyptus marginata) honey produces particularly high levels of H2O2 and has been found to be potently antifungal. This study characterized the activity of jarrah honey on fungal dermatophyte species. Jarrah honey inhibited dermatophytes with minimum inhibitory concentrations (MICs) of 1.5-3.5% (w/v), which increased to ≥25% (w/v) when catalase was added. Microscopic analysis found jarrah honey inhibited the germination of Trichophyton rubrum conidia and scanning electron microscopy of mature T. rubrum hyphae after honey treatment revealed bulging and collapsed regions. When treated hyphae were stained using REDOX fluorophores these did not detect any internal oxidative stress, suggesting jarrah honey acts largely on the hyphal surface. Although H2O2 appears critical for the antifungal activity of jarrah honey and its action on fungal cells, these effects persisted when H2O2 was eliminated and could not be replicated using synthetic honey spiked with H2O2, indicating jarrah honey contains agents that augment antifungal activity

    Factors affecting the production and measurement of hydrogen peroxide in honey samples

    Full text link
    Many Australian native honeys possess significant antimicrobial properties due to the production of hydrogen peroxide (H2O2) by glucose oxidase, an enzyme derived from the honeybee. The level of H2O2 produced in different honey samples is highly variable, and factors governing its production and stability are not well understood. In this study, highly active Australian honeys that had been stored for &gt;10 years lost up to 54 % of their antibacterial activity, although almost all retained sufficient activity to be considered potentially therapeutically useful. We used a simple colourimetric assay to quantify H2O2 production. Although we found a significant correlation between H2O2 production and antibacterial activity across diverse honey samples, variation in H2O2 only explained 47 % of the variation observed in activity, limiting the assay as a screening tool and highlighting the complexity of the relationship between H2O2 and the killing power of honey. To further examine this, we tested whether H2O2 detection in honey was being inhibited by pigmented compounds and if H2O2 might be directly degraded in some honey samples. We found no correlation between H2O2 detection and honey colour. Some honey samples rapidly lost endogenous and spiked H2O2, suggesting that components in honey, such as catalase or antioxidant polyphenols, may degrade or quench H2O2. Despite this rapid loss of H2O2, these honeys had significant peroxide-based antibacterial activity, indicating a complex relationship between H2O2 and other honey components that may act synergistically to augment activity.</jats:p

    A cost-effective colourimetric assay for quantifying hydrogen peroxide in honey

    Full text link
    Honey is a natural product with many beneficial properties including antimicrobial action. Production of hydrogen peroxide (H2O2) in diluted honey is central to this action. Here, we describe an optimized method for measuring levels of H2O2 in honey. This method is based on established methods, with the level of dilution, the time between dilution and reading the assay, and aeration of the samples during the assay identified as critical points for ensuring reliability and reproducibility. The method is cost-effective and easy to perform using common laboratory equipment. Using this method, we quantified the hydrogen peroxide content of five different, unprocessed polyfloral honeys collected in NC, USA. Our results show that H2O2 production by these honeys varies greatly, with some samples producing negligible levels of H2O2. We assessed the effect of colour on the assay by measuring the recovery of spiked H2O2 from light and dark honey and from serially diluted dark corn syrup, and found the amount of H2O2 that could be detected was lower in dark corn syrup and darker honey samples

    The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State

    Get PDF
    Honey has a long history of use for the treatment of digestive ailments. Certain honey types have well-established bioactive properties including antibacterial and anti-inflammatory activities. In addition, honey contains non-digestible carbohydrates in the form of oligosaccharides, and there is increasing evidence from in vitro, animal, and pilot human studies that some kinds of honey have prebiotic activity. Prebiotics are foods or compounds, such as non-digestible carbohydrates, that are used to promote specific, favorable changes in the composition and function of the gut microbiota. The gut microbiota plays a critical role in human health and well-being, with disturbances to the balance of these organisms linked to gut inflammation and the development and progression of numerous conditions, such as colon cancer, irritable bowel syndrome, obesity, and mental health issues. Consequently, there is increasing interest in manipulating the gut microbiota to a more favorable balance as a way of improving health by dietary means. Current research suggests that certain kinds of honey can reduce the presence of infection-causing bacteria in the gut including Salmonella, Escherichia coli, and Clostridiodes difficile, while simultaneously stimulating the growth of potentially beneficial species, such as Lactobacillus and Bifidobacteria. In this paper, we review the current and growing evidence that shows the prebiotic potential of honey to promote healthy gut function, regulate the microbial communities in the gut, and reduce infection and inflammation. We outline gaps in knowledge and explore the potential of honey as a viable option to promote or re-engineer a healthy gut microbiome

    Characterizing the mechanism of action of an ancient antimicrobial, manuka honey, against pseudomonas aeruginosa using modern transcriptomics

    No full text
    Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, Pseudomonas aeruginosa. We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing. Manuka honey uniquely affects genes involved in the explosive cell lysis process and in maintaining the electron transport chain, causing protons to leak across membranes and collapsing the proton motive force, and it induces membrane depolarization and permeabilization in P. aeruginosa. These data indicate that the activity of manuka honey comes from multiple mechanisms of action that do not engender bacterial resistance. IMPORTANCE The threat of antimicrobial resistance to human health has prompted interest in complex, natural products with antimicrobial activity. Honey has been an effective topical wound treatment throughout history, predominantly due to its broad-spectrum antimicrobial activity. Unlike traditional antibiotics, honey-resistant bacteria have not been reported; however, honey remains underutilized in the clinic in part due to a lack of understanding of its mechanism of action. Here, we demonstrate that honey affects multiple processes in bacteria, and this is not explained by its major antibacterial components. Honey also uniquely affects bacterial membranes, and this can be exploited for combination therapy with antibiotics that are otherwise ineffective on their own. We argue that honey should be included as part of the current array of wound treatments due to its effective antibacterial activity that does not promote resistance in bacteria
    corecore