6 research outputs found

    Microarray-based uncovering reference genes for quantitative real time PCR in grapevine under abiotic stress

    Get PDF
    Research ArticleBackground: Quantitative real time polymerase chain reaction is becoming the primary tool for detecting mRNA and transcription data analysis as it shows to have advantages over other more commonly used techniques. Nevertheless, it also presents a few shortcomings, with the most import being the need for data normalisation, usually with a reference gene. Therefore the choice of the reference gene(s) is of great importance for correct data analysis. Microarray data, when available, can be of great assistance when choosing reference genes. Grapevine was submitted to water stress and heat stress as well as a combination of both to test the stability of the possible reference genes. Results: Using the analysis of microarray data available for grapevine, six possible reference genes were selected for RT-qPCR validation: PADCP, ubiq, TIF, TIF-GTP, VH1-IK, aladin-related. Two additional genes that are commonly used as reference genes were included: act and L2. The stability of those genes was tested in leaves of grapevine in both field plants and in greenhouse plants under water or heat stress or a combination of both. Gene stability was analyzed with the softwares GeNorm, NormFinder and the ΔCq method resulting in several combinations of reference genes suitable for data normalisation. In order to assess the best combination, the reference genes were tested in putative stress marker genes (PCO, Galsynt, BKCoAS and HSP17) also chosen from the same microarray, in water stress, heat stress and the combination of both. Conclusions: Each method selected different gene combinations (PADCP + act, TIF + TIF-GTP and ubiq + act). However, as none of the combinations diverged significantly from the others used to normalize the expression of the putative stress marker genes, then any combination is suitable for data normalisation under the conditions tested. Here we prove the accuracy of choosing grapevine reference genes for RT-qPCR through a microarray analysi

    Portuguese wild grapevine genome re-sequencing (Vitis vinifera sylvestris)

    Get PDF
    Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-76012-6.The first genome of Vitis vinifera vinifera (PN40024), published in 2007, boosted grapevine related studies. While this reference genome is a suitable tool for the overall studies in the field, it lacks the ability to unveil changes accumulated during V. v. vinifera domestication. The subspecies V. v. sylvestris preserves wild characteristics, making it a good material to provide insights into V. v. vinifera domestication. The difference in the reproductive strategy between both subspecies is one of the characteristics that set them apart. While V. v. vinifera flowers are hermaphrodite, V. v. sylvestris is mostly dioecious. In this paper, we compare the re-sequencing of the genomes from a male and a female individual of the wild sylvestris, against the reference vinifera genome (PN40024). Variant analysis reveals a low number but with high impact modifications in coding regions, essentially non-synonymous single nucleotide polymorphisms and frame shifts caused by insertions and deletions. The sex-locus was manually inspected, and the results obtained are in line with the most recent works related with wild grapevine sex. In this paper we also describe for the first time RNA editing in transcripts of 14 genes in the sex-determining region, including VviYABBY and VviPLATZ.Tis work was supported by Fundação para a Ciência e Tecnologia (FCT) through the Research Center LEAF (UIDP/04129/2020). Authors JLCoito, MJNRamos, MRocheta, were funded by FCT fellowships SFRH/ BD/85824/2012 and CEECIND2017, SFRH/BD/110274/2015, SFRH/BPD/64905/2009, respectively

    Response of mycorrhizal Touriga Nacional variety grapevines to high temperatures measured by calorespirometry and near-infrared spectroscopy

    Get PDF
    Heat stress negatively affects several physiological and biochemical processes in grapevine plants. In this work, two new methods, calorespirometry, which has been used to determine temperature adaptation in plants, and near-infrared (NIR) spectroscopy, which has been used to determine several grapevine-related traits and to discriminate among varieties, were tested to evaluate grapevine response to high temperatures. ‘Touriga Nacional’ variety grapevines, inoculated or not with Rhizoglomus irregulare or Funneliformis mosseae, were used in this study. Calorespirometric parameters and NIR spectra, as well as other parameters commonly used to assess heat injury in plants, were measured before and after high temperature exposure. Growth rate and substrate carbon conversion effciency, calculated from calorespirometric measurements, and stomatal conductance, were the most sensitive parameters for discriminating among high temperature responses of control and inoculated grapevines. The results revealed that, although this vine variety can adapt its physiology to temperatures up to 40 ºC, inoculation with R. irregulare could additionally help to sustain its growth, especially after heat shocks. Therefore, the combination of calorespirometry together with gas exchange measurements is a promising strategy for screening grapevine heat tolerance under controlled conditions and has high potential to be implemented in initial phases of plant breeding programsinfo:eu-repo/semantics/publishedVersio

    RNA editing in inflorescences of wild grapevine unveils association to sex and development

    Get PDF
    RNA editing challenges the central dogma of molecular biology, by modifying the genetic information at the transcription level. Recent reports, suggesting increased levels of RNA editing in plants, raised questions on the nature and dynamics of such events during development. We here report the occurrence of distinct RNA editing patterns in wild Vitis flowers during development, with twelve possible RNA editing modifications observed for the first time in plants. RNA editing events are gender and developmental stage specific, identical in subsequent years of this perennial species and with distinct nucleotide frequencies neighboring editing sites on the 5' and 3' flanks. The transcriptome dynamics unveils a new regulatory layer responsible for gender plasticity enhancement or underling dioecy evolution in Vitis

    Heat and water stress induce unique transcriptional signatures of heat-shock proteins and transcription factors in grapevine

    Get PDF
    Grapevine is an extremely important crop worldwide. In southern Europe, post-flowering phases of the growth cycle can occur under high temperatures, excessive light, and drought conditions at soil and/or atmospheric level. In this study, we subjected greenhouse grown grapevine, variety Aragonez, to two individual abiotic stresses, water deficit stress (WDS), and heat stress (HS). The adaptation of plants to stress is a complex response triggered by cascades of molecular networks involved in stress perception, signal transduction, and the expression of specific stress-related genes and metabolites. Approaches such as array-based transcript profiling allow assessing the expression of thousands of genes in control and stress tissues. Using microarrays, we analyzed the leaf transcriptomic profile of the grapevine plants. Photosynthesis measurements verified that the plants were significantly affected by the stresses applied. Leaf gene expression was obtained using a high-throughput transcriptomic grapevine array, the 23K custom-made Affymetrix Vitis GeneChip. We identified 1,594 genes as differentially expressed between control and treatments and grouped them into ten major functional categories using MapMan software. The transcriptome of Aragonez was more significantly affected by HS when compared with WDS. The number of genes coding for heat-shock proteins and transcription factors expressed solely in response to HS suggesting their expression as unique signatures of HS. However, a cross-talk between the response pathways to both stresses was observed at the level of AP2/ERF transcription factors

    Presentation_1_Vitis Flower Sex Specification Acts Downstream and Independently of the ABCDE Model Genes.PDF

    No full text
    <p>The most discriminating characteristic between the cultivated Vitis vinifera subsp. vinifera and the wild-form Vitis vinifera subsp. sylvestris is their sexual system. Flowers of cultivars are mainly hermaphroditic, whereas wild plants have female and male individuals whose flowers follow a hermaphroditic pattern during early stages of development and later develop non-functional reproductive organs. In angiosperms, the basic developmental system for floral organ identity is explained by the ABCDE model. This model postulates that regulatory gene functions work in a combinatorial way to confer organ identity in each whorl. In wild Vitis nothing is known about the function and expression profile of these genes. Here we show an overall view of the temporal and spatial expression pattern of the ABCDE genes as well as the pattern of VviSUPERMAN that establishes a boundary between the stamen and the carpel whorls, in the male, female and complete flower types. The results show a similar pattern in Vitis species suggesting that the pathway leading to unisexuality acts independently and/or downstream of B- and C- function genes.</p
    corecore