355 research outputs found
Multiclass Semi-Supervised Learning on Graphs using Ginzburg-Landau Functional Minimization
We present a graph-based variational algorithm for classification of
high-dimensional data, generalizing the binary diffuse interface model to the
case of multiple classes. Motivated by total variation techniques, the method
involves minimizing an energy functional made up of three terms. The first two
terms promote a stepwise continuous classification function with sharp
transitions between classes, while preserving symmetry among the class labels.
The third term is a data fidelity term, allowing us to incorporate prior
information into the model in a semi-supervised framework. The performance of
the algorithm on synthetic data, as well as on the COIL and MNIST benchmark
datasets, is competitive with state-of-the-art graph-based multiclass
segmentation methods.Comment: 16 pages, to appear in Springer's Lecture Notes in Computer Science
volume "Pattern Recognition Applications and Methods 2013", part of series on
Advances in Intelligent and Soft Computin
The mixed problem for the Laplacian in Lipschitz domains
We consider the mixed boundary value problem or Zaremba's problem for the
Laplacian in a bounded Lipschitz domain in R^n. We specify Dirichlet data on
part of the boundary and Neumann data on the remainder of the boundary. We
assume that the boundary between the sets where we specify Dirichlet and
Neumann data is a Lipschitz surface. We require that the Neumann data is in L^p
and the Dirichlet data is in the Sobolev space of functions having one
derivative in L^p for some p near 1. Under these conditions, there is a unique
solution to the mixed problem with the non-tangential maximal function of the
gradient of the solution in L^p of the boundary. We also obtain results with
data from Hardy spaces when p=1.Comment: Version 5 includes a correction to one step of the main proof. Since
the paper appeared long ago, this submission includes the complete paper,
followed by a short section that gives the correction to one step in the
proo
Markov propagation of allosteric effects in biomolecular systems: application to GroEL–GroES
We introduce a novel approach for elucidating the potential pathways of allosteric communication in biomolecular systems. The methodology, based on Markov propagation of ‘information' across the structure, permits us to partition the network of interactions into soft clusters distinguished by their coherent stochastics. Probabilistic participation of residues in these clusters defines the communication patterns inherent to the network architecture. Application to bacterial chaperonin complex GroEL–GroES, an allostery-driven structure, identifies residues engaged in intra- and inter-subunit communication, including those acting as hubs and messengers. A number of residues are distinguished by their high potentials to transmit allosteric signals, including Pro33 and Thr90 at the nucleotide-binding site and Glu461 and Arg197 mediating inter- and intra-ring communication, respectively. We propose two most likely pathways of signal transmission, between nucleotide- and GroES-binding sites across the cis and trans rings, which involve several conserved residues. A striking observation is the opposite direction of information flow within cis and trans rings, consistent with negative inter-ring cooperativity. Comparison with collective modes deduced from normal mode analysis reveals the propensity of global hinge regions to act as messengers in the transmission of allosteric signals
Hardy Spaces on Weighted Homogeneous Trees
We consider an infinite homogeneous tree V endowed with the usual metric d defined on graphs and a weighted measure μ. The metric measure space (V, d, μ) is nondoubling and of exponential growth, hence the classical theory of Hardy spaces does not apply in this setting. We construct an atomic Hardy space H1(μ) on (V, d, μ) and investigate some of its properties, focusing in particular on real interpolation properties and on boundedness of singular integrals on H1(μ)
Estimating View Parameters From Random Projections for Tomography Using Spherical MDS
Background
During the past decade, the computed tomography has been successfully applied to various fields especially in medicine. The estimation of view angles for projections is necessary in some special applications of tomography, for example, the structuring of viruses using electron microscopy and the compensation of the patient\u27s motion over long scanning period. Methods
This work introduces a novel approach, based on the spherical multidimensional scaling (sMDS), which transforms the problem of the angle estimation to a sphere constrained embedding problem. The proposed approach views each projection as a high dimensional vector with dimensionality equal to the number of sampling points on the projection. By using SMDS, then each projection vector is embedded onto a 1D sphere which parameterizes the projection with respect to view angles in a globally consistent manner. The parameterized projections are used for the final reconstruction of the image through the inverse radon transform. The entire reconstruction process is non-iterative and computationally efficient. Results
The effectiveness of the sMDS is verified with various experiments, including the evaluation of the reconstruction quality from different number of projections and resistance to different noise levels. The experimental results demonstrate the efficiency of the proposed method. Conclusion
Our study provides an effective technique for the solution of 2D tomography with unknown acquisition view angles. The proposed method will be extended to three dimensional reconstructions in our future work. All materials, including source code and demos, are available onhttps://engineering.purdue.edu/PRECISE/SMDS
\epsilon-regularity for systems involving non-local, antisymmetric operators
We prove an epsilon-regularity theorem for critical and super-critical
systems with a non-local antisymmetric operator on the right-hand side.
These systems contain as special cases, Euler-Lagrange equations of
conformally invariant variational functionals as Rivi\`ere treated them, and
also Euler-Lagrange equations of fractional harmonic maps introduced by Da
Lio-Rivi\`ere.
In particular, the arguments presented here give new and uniform proofs of
the regularity results by Rivi\`ere, Rivi\`ere-Struwe, Da-Lio-Rivi\`ere, and
also the integrability results by Sharp-Topping and Sharp, not discriminating
between the classical local, and the non-local situations
Non-Redundant Spectral Dimensionality Reduction
Spectral dimensionality reduction algorithms are widely used in numerous
domains, including for recognition, segmentation, tracking and visualization.
However, despite their popularity, these algorithms suffer from a major
limitation known as the "repeated Eigen-directions" phenomenon. That is, many
of the embedding coordinates they produce typically capture the same direction
along the data manifold. This leads to redundant and inefficient
representations that do not reveal the true intrinsic dimensionality of the
data. In this paper, we propose a general method for avoiding redundancy in
spectral algorithms. Our approach relies on replacing the orthogonality
constraints underlying those methods by unpredictability constraints.
Specifically, we require that each embedding coordinate be unpredictable (in
the statistical sense) from all previous ones. We prove that these constraints
necessarily prevent redundancy, and provide a simple technique to incorporate
them into existing methods. As we illustrate on challenging high-dimensional
scenarios, our approach produces significantly more informative and compact
representations, which improve visualization and classification tasks
Semantic distillation: a method for clustering objects by their contextual specificity
Techniques for data-mining, latent semantic analysis, contextual search of
databases, etc. have long ago been developed by computer scientists working on
information retrieval (IR). Experimental scientists, from all disciplines,
having to analyse large collections of raw experimental data (astronomical,
physical, biological, etc.) have developed powerful methods for their
statistical analysis and for clustering, categorising, and classifying objects.
Finally, physicists have developed a theory of quantum measurement, unifying
the logical, algebraic, and probabilistic aspects of queries into a single
formalism. The purpose of this paper is twofold: first to show that when
formulated at an abstract level, problems from IR, from statistical data
analysis, and from physical measurement theories are very similar and hence can
profitably be cross-fertilised, and, secondly, to propose a novel method of
fuzzy hierarchical clustering, termed \textit{semantic distillation} --
strongly inspired from the theory of quantum measurement --, we developed to
analyse raw data coming from various types of experiments on DNA arrays. We
illustrate the method by analysing DNA arrays experiments and clustering the
genes of the array according to their specificity.Comment: Accepted for publication in Studies in Computational Intelligence,
Springer-Verla
Local Interpretation Methods to Machine Learning Using the Domain of the Feature Space
As machine learning becomes an important part of many real world applications
affecting human lives, new requirements, besides high predictive accuracy,
become important. One important requirement is transparency, which has been
associated with model interpretability. Many machine learning algorithms induce
models difficult to interpret, named black box. Moreover, people have
difficulty to trust models that cannot be explained. In particular for machine
learning, many groups are investigating new methods able to explain black box
models. These methods usually look inside the black models to explain their
inner work. By doing so, they allow the interpretation of the decision making
process used by black box models. Among the recently proposed model
interpretation methods, there is a group, named local estimators, which are
designed to explain how the label of particular instance is predicted. For
such, they induce interpretable models on the neighborhood of the instance to
be explained. Local estimators have been successfully used to explain specific
predictions. Although they provide some degree of model interpretability, it is
still not clear what is the best way to implement and apply them. Open
questions include: how to best define the neighborhood of an instance? How to
control the trade-off between the accuracy of the interpretation method and its
interpretability? How to make the obtained solution robust to small variations
on the instance to be explained? To answer to these questions, we propose and
investigate two strategies: (i) using data instance properties to provide
improved explanations, and (ii) making sure that the neighborhood of an
instance is properly defined by taking the geometry of the domain of the
feature space into account. We evaluate these strategies in a regression task
and present experimental results that show that they can improve local
explanations
- …