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Research articleEstimating view parameters from random 
projections for Tomography using spherical MDS
Yi Fang*1, Sundar Murugappan1 and Karthik Ramani1,2

Abstract
Background: During the past decade, the computed tomography has been successfully applied to various fields 
especially in medicine. The estimation of view angles for projections is necessary in some special applications of 
tomography, for example, the structuring of viruses using electron microscopy and the compensation of the patient's 
motion over long scanning period.

Methods: This work introduces a novel approach, based on the spherical multidimensional scaling (sMDS), which 
transforms the problem of the angle estimation to a sphere constrained embedding problem. The proposed approach 
views each projection as a high dimensional vector with dimensionality equal to the number of sampling points on 
the projection. By using SMDS, then each projection vector is embedded onto a 1D sphere which parameterizes the 
projection with respect to view angles in a globally consistent manner. The parameterized projections are used for the 
final reconstruction of the image through the inverse radon transform. The entire reconstruction process is non-
iterative and computationally efficient.

Results: The effectiveness of the sMDS is verified with various experiments, including the evaluation of the 
reconstruction quality from different number of projections and resistance to different noise levels. The experimental 
results demonstrate the efficiency of the proposed method.

Conclusion: Our study provides an effective technique for the solution of 2D tomography with unknown acquisition 
view angles. The proposed method will be extended to three dimensional reconstructions in our future work. All 
materials, including source code and demos, are available on https://engineering.purdue.edu/PRECISE/SMDS.

Background
This work studies the problem of 2D tomography with
unknown view angles and discusses the potential applica-
tions of our work. We give the background of our work,
reviews of the existing methods and a brief introduction
of our proposed method in the following subsections.

Tomography with unknown view angles
The computed tomography has been successfully applied
to various fields over the past decades, for example, med-
ical imaging, synthetic aperture radar (SAR) and Cryo-
electron microscopy (cryoEM) for structuring viruses [1-
4]. The traditional tomography is defined as a process of
recovering the object from the measurements that are
line integrals of that object at some set of known orienta-

tions (view angles). However, in some special situations,
obtaining the view angles is difficult or suffers from accu-
rate measurement. For example, 1) the patient's motion
owing to long scanning period can result in uncertainty of
view angles, 2) the data acquisition of single particle
cryoEM are the line integrals of many identical copies of
virus molecules at random orientations. Therefore, the
research of a more generalized tomography independent
of known acquisition view angles is worthwhile to study
for the reconstruction of the objects under various cir-
cumstances. Our overarching goal is the reconstruction
of 3D virus from 2D cryoEM images. As one step towards
the goal, we address the problem of image alignment (ori-
entation determination). In the application of cryoEM,
the projections for the macromolecules at a preset angle
are captured for a large number of identical macromole-
cules at different unknown and random orientations. If
we assume there is no overlapping o the projection, the
imaging process is the same as having projections of the
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macromolecule at multiple but unknown angles while fix-
ing the position of a single homogeneous macromolecule
[5]. Hence, like [5-7], we propose a computational model
which is equivalent to the real-world scenario, as having
projections at different, unknown and random angles
while fixing the position of a single homogeneous macro-
molecule.

Recently, the uniqueness and feasibility of tomography
with unknown view angles has been discussed in [3,8].
An object can be uniquely determined using the projec-
tion data with a certain number of unknown and distinct
view angles. The reconstructed object is subjected to a
global arbitrary spatial rotation, which doesn't influence
the study of the investigated objects. A review of recently
proposed methods dealing with this issue is described
below.

Review of existing methods
Several approaches for analyzing projections measured
from unknown view angles have been developed over last
two decades [6,8-18]. Those methods can be roughly cat-
egorized into two classes, iterative and non-iterative
methods. The iterative methods described in [8,18] use
the moment characterization of the range space of the
Radon Transform, known as the Helgasson-Ludwig (HL)
consistency conditions to reconstruct the image. The
authors proposed a Bayesian approach for the view angle
estimation for tomography in [16]. An integrated statisti-
cal technique for volume reconstruction with unordered
sequential slices is presented in [17]. The limitations of
the iterative methods cited above arise because of a huge
computation complexity owing to the solution of a large
nonlinear problem at each iteration [5]. Recently, non-
iterative approaches have been developed in [5,6,13] to
achieve a fast way of structuring the object from its pro-
jections with unknown view angles. Yagle introduced a
simple non-iterative algorithm based on circular har-
monic expansion in [5]. The work decouples the view
angles estimation problem from the image estimation
problem and thereby largely reduces the computational
expenses. Two manifold learning based techniques
showed great performance at solving the view angles
uncertainty [6,13]. Georg etc. [13] applied the manifold
learning to sort the time-ordered slab data for automatic
estimation of lung volume without any external breath
measurements. The goal is to piece together the local slab
data on a proper position in a globally consistent manner,
with regards to breath phase circle. Coifman et al. [6] pre-
sented a Laplacian graph based manifold learning
method to enforce the view angles embedded on the cir-
cle. All of the non-iterative approaches have a common
attractive property: computation is really efficient as the
angle estimation problem is transformed into a matrix

eigenvalue problem with the size equal to the number of
angles.

sMDS for view angles uncertainty
The manifold learning methods show attractive proper-
ties in terms of estimating view angles from the acquisi-
tion data [6,13,19]. As mentioned in [19], the popular
manifold learning methods such as, Multidimensional
scaling (MDS) [20], ISOMAP [21], and locally linear
embedding (LLE) [22], cannot handle the view angle
uncertainty problem directly because these methods can
only embed points in a flat space while the view angles
are intrinsically distributed on a sphere. To solve this
problem, our study introduces a reconstruction scheme
based on spherical MDS (sMDS) proposed in [23], which
is able to embed points on a spherical manifold. Our
work is inspired by the projection-slice theorem, which
states that the Fourier transform of the projection of a 2D
function is equal to a slice through the origin of the 2D
Fourier transform of that function. The algorithm for
estimation of view angle for each projection consists of
three steps. First, Fourier transform is applied to all of the

projection data (e.g.  denotes the Fourier transform of
the ith projection). Then the distance between the pair-

wise Fourier transform (e.g.  and ) is measured to
build the distance matrix. Last, sMDS is applied on this
distance matrix to estimate the view angle for each pro-
jection data. The algorithm details are presented in Sec-
tion 2. Essentially the embedding process assigns each
projection a point in a low dimensional intrinsic parame-
ter space. This process assembles the similar projections
that are close to each other without using any prior
knowledge. There are two reasons to build the distance
matrix in the Fourier domain 1) it is more flexible to per-
form the computations on the Fourier domain as it helps
us to handle noise by allowing us to choose a proper
range of frequency instead of the complete range. This is
even useful when the noise level is high as the signal in
low frequency range is comparable to noise while the sig-
nal in high frequency range is totally buried by noise.
Therefore, the distance computed in the Fourier domain
is more robust to noise by controlling the range of fre-
quency in Fourier domain. The algorithm for choosing an
optimal range in Fourier domain is one of our future
work. Currently, we use either half of the range or the full
range itself if noise is low. 2) the magnitude of the Fourier
vector is invariant to the center shift of the image. Thus,
even when the image shifts during projecting, the dis-
tance would not be affected if the computation is only
based on the magnitude of the Fourier values.

The contributions of the proposed method are the
development of a sMDS based scheme for embedding the
projection data onto a 1D sphere and then orienting the
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projection data using the coordinates of the embedded
points. The major portion of our contributions is the
rearrangement of random projections data, which is illus-
trated in the steps from Figure 1(B) to 1(C). Figure 1
shows the basic framework and proposed idea. The pro-
jections are first generated from a set of view angles ran-
domly, the projection data are then sorted in a globally
consistent manner, and the reconstruction of the image
from the ordered projections is completed through the
inverse radon transform.

Methods
Spherical MDS
Given the pairwise distances between points, multi-
dimensional scaling is widely adopted to embed these
points in a low dimensional space which are consistent
with pairwise distances. The main goal of the embedding
techniques is to unveil the structure underlying a set of
objects under investigation, for instance, images. How-
ever, the widely used embedding approaches such as
MDS, LLE, and ISOMAP [21,22], only solve the embed-
ding of the high-dimensional points in flat space like a
plane. These techniques would fail in the case where the
intrinsic structure of the manifold is topologically not a
plane. The sMDS presented in [23] expands the applica-
bility of MDS for embedding the points on a sphere.
There are two aspects which makes sMDS different from
MDS. First, the sMDS measures the pairwise distance
between points using geodesic distance instead of the

Euclidean distance because the points lie on a sphere.
Second, the method of constructing the centering matrix,
which transforms the distance matrix into dot-product
form, is different from the MDS owing to the distance
measurements in the non-Euclidean space. The algo-
rithm procedure for sMDS for embedding points onto
the k-dimensional sphere described in [23], is as follows.

1. Build the pairwise distance matrix M, and
2. Compute the dot-product form of the distance 

matrix , where Γ denotes a opera-
tor applied on the distance matrix M and r denotes 
the radius of the sphere calculated using 

, and
3. Choose the first the k + 1 eigenvectors of the dis-
tance matrix Γ(M). The ith eigenvector is denoted as 

 = (Vi(1), Vi(2)), ..., Vi(n) where n is the number of 
the points. The coordinate of the jth embedded point 

is  = (V1(j), V2(j), ..., Vk+1(j)) where k is the dimen-
sionality of the sphere.

This procedure briefly introduces the general ideas
about the sMDS. The details about how to apply sMDS
for 2D tomography application is provided in the follow-
ing sections.

Problem definition
Fourier slice theorem
The Fourier slice theorem is the fundamental theory
behind tomography. The theorem states that the one-
dimensional Fourier transform of a parallel projection is
equal to a slice through the origin of the two-dimensional
Fourier transform. It opens up the probability to recon-
struct the object via performing the inverse Fourier trans-
form. Figure 2 is a graphical illustration of the projection
slice theorem in two dimensions. The left figure shows
one projection (Pθ), from a view angle, mathematically, an
integral of the object density function along the sight par-
allel line. The figure on the right shows the two dimen-
sional fourier transform of the object. The green color
points represent a slice of 2D Fourier transform and the
projection Pθ is a one-dimensional Fourier transform pair
according to the theorem.
Derivation of the Model
Projection and its Fourier transform Each projection

data is viewed as a high dimensional vector (PVector) 
= (P(t1), P(t2), ..., P(tn)) where t1, t2, ..., tn are equally
spaced sampling points on the projection data and n is
the dimensionality of the vector. The Fourier transform of
the PVector is also viewed as a high dimensional vector

(FTVector), represented as (F(ρ1), F(ρ2), ..., F(ρn))

Γ( ) ( )M = r
Mij
r

2cos

r ij
Mij= max ( )p
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Figure 1 Reconstruction flowchart. The flowchart shows three basic 
steps of the reconstruction procedure from projections data with un-
known view angles. Figure (A) is the original brain MR image. Figure (B) 
shows the projections data generated by projecting the brain image 
from a set of view angles randomly. All of projection data stack up 
along the vertical direction. We can see from the figure that the order 
of the projection data is really shuffled due to the random projection 
angels. Figure (C) shows the sorted projection data, which is also 
named sinogram. The comparison between Figure (B) and Figure(C) 
demonstrates the capability of our method for sorting the projection 
data. Figure (D) display the reconstructed image from the sorted pro-
jection data by using the inverse radon transform. The reconstructed 
image is subject to a global rotation transform of the original image.
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where ρ1, ρ2, ..., ρn are represented as equally spaced sam-
pling points on the Fourier transform of the projection
data and n is the dimensionality of the vector. According
to the theorem, each projection collected from unknown
view angle has a unique Fourier transform pair, which is a
slice of the 2D Fourier transform of the object. Therefore,
the problem of sorting projections in space domain is
equivalent to orienting their corresponding Fourier trans-
forms in frequency domain.
Orienting Fourier transforms The rearrangement of
Fourier transforms is essentially a dimensionality reduc-
tion problem with the internal structure constrained by
spherical manifold. As we can see in Figure 2, the slices
are distributed along the radial direction. We can reason

analytically and imagine that a FTVector (a slice),  is
intrinsically restricted on a circle since a line passing
through the origin could be uniquely parameterized by its
orientation. We provide an observation in the appendix
section to explain why the underlying structure is a 1D

sphere (a circle). Mathematically, the FTVector  =
(Fi(ρ1), Fi(ρ2), ..., Fi(ρn)) could be intrinsically reduced to a

two dimensional point  = (Xi, Yi) on a circle, where i
denotes the ith projection and X and Y denote the princi-
pal axes in cartesian coordinate. The FTVectors can be
oriented based on the corresponding two dimensional

point set { , i � (1, 2, ..., n)} where n is the number of
points.
Orienting the projections As we discussed above, one
projection is uniquely associated with a slice in the 2D
Fourier transform space. The low dimensional intrinsic
parameter for each FTVector could be assigned to the
corresponding PVector directly. The embedded point set

reveals the orientation of the projection in a coherent
global manner, which clearly organize the projections
with unknown view angles. Note that the estimated orga-
nization is subjected to a global arbitrary rotation, which
doesn't influence the analysis of the reconstruction result.

This model basically converts the view angle uncer-
tainty problem to a dimensionality reduction problem
and the reduced low dimensional structure is used to
recover the view angles.

View angles estimation algorithm
Pairwise distance matrix
In this work, the pairwise distance matrix is built by fol-
lowing the steps described in [21]. The computation of
the pairwise distance matrix consists of two steps. First,
given a distance threshold T, the high dimensional points
(e.g. the FTVector in this work) which are neighbors, are
determined based on distance d(A, B) between pairs of
points A, B ( Eq.1). A particular point connects to other
points if the pairwise distance d(A, B) is less than the pre-
defined threshold T. A weighted graph G with weight
d(A, B) between neighboring points can be used to
describe these neighborhood relations. Second, the Dijk-
stra's algorithm [24] is applied to the weighted graph G to
compute the shortest path distance in the graph, which
well approximates the geodesic distance between all pairs
of the points.

Note that there have been a number of standard ways of
measuring the distance between two high dimensional
vectors as described in [25]. The popular standards
include L1 norm, L2 norm, λ2 measure, and Bhattacha-
ryya distance. In this work, we adopt a widely used dis-
tance measurement, L2 norm.

where  and  denote differently oriented FTVec-
tor respectively.
Estimation of view angles
Determination of coordinates The eigenvalue and
eigenvector of the dot-form matrix, Γ(M), intrinsically
reflect the relative positions of the embedded points in a
globally consistent way. The coordinates of the embedded
points are solved by the following procedure.

1. Rank the eigenvalues of the Γ(M) in decreasing 

order and choose first two eigenvectors,  and , 
corresponding to the first two eigenvalues, and
2. Normalize each pair (V1(i), V2(i)) to a unit vector, 
where i is the index of the embedded points. The nor-
malized vectors will be used as the coordinates of the 

embedded point  on the circle.

F
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Figure 2 Illustration of Fourier slice theorem. The Figure illustrates 
the basics of Fourier slice theorem. The left figure shows the simulation 
of generating the projection from the view angle θ. The Pθ denotes the 
projection from view angle θ. The right figure shows the Fourier trans-
form of the image in the left. The green marked slice and the Fourier 
transform of Pθ are equal according to the Fourier slice theorem.
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Determination of view angles For determination of
view angles, we first compute an initial estimate of view
angles by the inverse triagonometric functions, arctan-
gent. We then use a refinement process to obtain the final
accurate angles.

1. Apply the inverse triagonometric function, arctan-
gent, to the coordinates of embedded points for cal-
culating the initial set of view angles,

where i denotes the ith point, Y i and X i denote the
coordinate of the ith embedded point and φi the esti-
mated view angle for the ith projection.

2. Sort the initial set of view angles φ1, φ2, ..., φn) in 
ascending order, uniformly rearrange the view angles 
along the circle, and associate the refined view angle 
set to the original projection data.

Results
We have implemented sMDS for 2D tomography with
unknown view angles and assessed its performance from
the experimental results. The algorithms presented in the
paper are implemented on a Pentium D 3.2 GHz com-
puter with 1 G RAM running Windows XP. The images
for the experiments have been chosen from the Whole
Brain Atlas http://www.med.harvard.edu/AANLIB/
home.html. The Whole Brain Atlas provides a large set of
MR images for both normal and diseased brain. There are
three parameters in the experimental setting, the number
of the projections, N, the threshold, T, which is used to
determine the neighborhood relation between a pair of
points, and the number of the sampling points along each
projection, S.

Orienting projection data
In the first experiment, we verify the performance of the
sMDS. This test starts with generating random projec-
tions from a set of view angles. The number of the projec-
tions, N, is set at 360 and the number of the sampling
points of each projection is set at 299. We used a normal
brain MR image as the experimental object, shown in Fig-
ure 3. Figure 4 shows the visualization of the projection
data. The Figure 4(A) illustrates the projections with ran-
dom view angles and Figure 4(B) shows the sorted projec-
tion data. The horizontal axis in the figure is labelled with
the index of projection data, and the vertical axis of the
histogram is the number of the sampling points of each
projection. The colorbar on the right side indicates the
value of the projection data at each sampled position. The
value range of horizontal axis is between 1 and 360, indi-
cating that there are total 360 projections acquired from

different view angles. The value range of vertical axis is
from 1 to 299, indicating that number of the sampling
points, S, set at 299 for each projection data.

A visual comparison between the two figures demon-
strates that sMDS sorts the projection data well. We can
see from the Figure 4(A) that the projection data are shuf-
fled owing to the random projections, while in the Figure

j i
Yi
Xi

= arctan( ) (2)

Figure 3 Brain MR image. Figure displays a normal brain MR image. 
The image is downloaded from the Whole Brain Atlas, Harvard Univer-
sity.

Figure 4 Random projections and its rearrangement. Two figures 
display the projections generated from a set of view angles. The hori-
zontal axis denotes the index of projections and the vertical axis de-
notes the sample positions of each projection. As we can find, the 
range of horizontal axis from 0 to 360 indicates that there are total 360 
projections in this figure, and the range of vertical axis from 0 to 300 in-
dicates that there are 300 sampled points on each projection. The col-
orbar on the right side indicate the value of projection data. The 
projection data in the Figure (A) and Figure (B) are the same set, but the 
difference between two figures is that projections in (A) are unordered 
and sorted in (B). The figure (B) is a common named sinogram, pro-
duced by the radon transform of the image. Comparison between two 
figures demonstrates the performance of our method in rearranging 
the randomly produced projections.

Shuffled projections Sorted projections

http://www.med.harvard.edu/AANLIB/home.html
http://www.med.harvard.edu/AANLIB/home.html
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4(B) the projection data are clearly ordered with the
global relative orientation.

Verification of reconstruction quality
In the second experiment, we verify the performance of
sMDS for view angles estimation. We generate different
number of the projections of a normal brain MR image
from a set of view angles ranging from 0°to 360°. We dem-
onstrate the performance of our proposed method from
the comparison between the original and reconstructed
images. We test the effect of the projection number, N,
and threshold value, T. Figure 5 shows reconstructed
results of the brain MR image (see Figure 3) using differ-
ent number of projections. The threshold, T, used for the
neighbors detection are slightly varied according to the
number of the projections. With the increase in the num-
ber, N, the distance metric between pairwise points
decrease. Therefore, we need to lower the value of the
threshold to assure that a proper neighbor relation for
each projection is preserved. The reconstruction quality
is enhanced with the increase in the number of the pro-
jections(see Figure 3). In addition, we observe that the
reconstructed images are subjected to an arbitrary rota-
tion of the original image. We further verify quantita-
tively the reconstruction performance by comparing the

original image with the reconstructed image. In our test,
we cannot directly subtract the original from the recon-
structed image as there is an arbitrary rotation of the
reconstructed image. However, the registration of the two
images can remove the effect of the arbitrary global rota-
tion. In this experiment, the registration between original
and reconstructed images is trivial as the correspondence
between the randomly shuffled projections and the re-
organized projections can be easily tracked. The global
rotation angle can be easily retrieved by finding the dif-
ference between any corresponding pairs. For example,
we can track the first projection of the original image,
find its relative position in the re-organized projections
sequence, then compute the rotation angle. We provide
two quantitative measures for the reconstruction perfor-
mance: one is the peak signal-to-noise ratio (PSNR), and
the other is mean squared error (MSE), which are calcu-
lated using Eq.3 and Eq.4.

Figure 6 shows three images. The image on the left is
the original image, the middle image is reconstructed
from 512 projections and the image on the right is regis-
tered by the method described above. The MSE and
PSNR between the original image and registered images
are 0.0037 and 24.2804, which show a high quality of
reconstruction from the original projections.

We further applied sMDS method to the electron
microscopic (EM) images. We used a similar procedure
as the above for the experiment. The projections are
available on the EM database EMDB http://
www.pdbj.org/emnavi/. We tested our method on three

MSE
mn

I i j K i j
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Figure 5 Reconstruction results. The reconstructed images from the 
projections, which are generated by projecting Figure 3 through differ-
ent view angles. N and T in the figure denote the number of projec-
tions and threshold for neighbor relation determination respectively. 
As we can see, the reconstruction quality is enhanced with the in-
crease of the number of the projections. Note that the threshold would 
be adjusted with the change of number of projection as the more the 
projection the less the distance between pairwise projections.

N = 64
T = 0.025

N = 128
T = 0.015

N = 256
T = 0.005

N = 512
T = 0.0025

A B

C D

Figure 6 Original image, reconstructed image and registered im-
age. The reconstructed images from the projections, which are gener-
ated by projecting Figure 3 through different view angles. There are 
512 projections generated uniformly and are randomly shuffled. The 
image on left is the original image, the middle one is the reconstructed 
from the random projections and the image on the right is the regis-
tered image.

http://www.pdbj.org/emnavi/
http://www.pdbj.org/emnavi/
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different density map (EMDB ID:1592,1665 and 5141).
Figure 7(A-C) show the original projections from three
different objects and Figure 7(D-F) are the corresponding
reconstructed images respectively. From these images, we
can find that the image can be reconstructed with a high
quality if the images are not symmetric. Figure 7(F) shows
an unsuccessful reconstruction, due to the inherent sym-
metry, a limitation of our sMDS method.

Resistance to noise
In the third experiment, we tested the capability of our
proposed method in handling projections with additive
noise. We choose the brain MR image (see Figure 3) as
the experimental subject. We generate a set of projections
from 512 view angles randomly, and add noise to the
recorded projections. We use Gaussian noise with zero
mean and a standard deviation determined by the follow-
ing equation.

where Signal and Noise are the variance of the noiseless
projections and the noise respectively. Figure 8 shows the
reconstruction results from the noisy projection data.
Our proposed method demonstrates good performance
for the noisy projections. From the Figure 8(D-F), we can
find that the reconstruction quality is only slightly
affected by the noise if the value of the SNR is above 10
dB. However, in the case of SNR less than 2 dB, the noise
significantly affects the quality of reconstructions.

Discussion
Analysis of experimental results
The experiments conducted in this work verify the per-
formance of our proposed method in dealing with the 2D
Tomography with unknown view angles. The number of
the projection data (N) is one of the most important
parameters in our experiments. The manifold learning
methods generally require a sufficient number of sam-
ples. To meet this requirement, N should be relatively big
enough, e.g. 256. Secondly, the threshold for neighbors
detections is extremely important for our method. Since
the sMDS is essentially a method piecing together the
local information in a global manner, the local or neigh-
bor relations between points ultimately determine the
global embedding. In our experiment, the setting of the
threshold is mainly based on N. As we understand, larger
the value N, less the distance between them, and thus a
smaller threshold is chosen to build a proper set of neigh-
bors.

Applications
The estimation of view angles for projections is necessary
in some special applications of tomography. We discuss
the potential applications of our proposed method in this
section. Since the main contribution of this work is the
tomography with unknown view angles, this work would
be crucial to address the needs of patients in designing
next generation tomography equipment. Various studies
have shown that it could make the analysis less compli-
cated if the patients are at ease and less anxious. Nowa-
days, the patients are required to remain motionless
during a long scanning period. The difficulty of being

SNR
signal
Noise

= 20 10log ( ) (5)

Figure 7 The reconstruction results of the 2D cryoEM projections. 
The figure shows the reconstruction results from the 2D cryoEM pro-
jections. Figure (A-C) are the original cryoEM projections. Figure (D-F) 
are the corresponding reconstruction results of Figure (A-C) respec-
tively.

Figure 8 Reconstruction from noisy projections. There are six fig-
ures displaying the reconstruction results from noisy projections. The 
projections in different figures are corrupted by the noise to different 
extent. The SNR underneath each figure indicates the signal noise ra-
tio. We can conclude, from the observation and comparison of the six 
reconstructed images, that our method is tolerable to noisy data. The 
reconstruction quality seems reasonable even when the SNR is around 
2 dB, in Figure (B).

A B C

F

SNR = 1dB SNR = 2dB SNR = 5dB

ED

SNR = 10dB SNR = 20dB SNR = 30dB
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motionless and the increasing discomfort and anxiety of
the patients lead to the measurement error and analysis
complication. Our method shows great potential to mini-
mize these constraints. In addition, there are some situa-
tions where the view angles or the acquisition positions of
projections are really hard or not possible to be known to
us, for instance, the macromolecule structure determina-
tion by electron microcopy. Our proposed method offers
a very promising approach to reconstruct the object effi-
ciently.

Limitations
The estimation of view angles or acquisition positions
could be categorized as the inverse problem, which is
defined as the inference of model parameters from the
observed data. There is an unavoidable limitation of
methods for the estimation view angles, including the
method presented in this work. A perfectly symmetrical
object would lead to the fact that a certain number of
projections from different view angles are identical to
each other. In this case, it is not possible to associate the
projections with different view angles because the projec-
tion data themselves are not distinguishable, even though
they are obtained from different view angles. To over-
come this problem, the pre-estimation of the symmetry
of the investigated object could be combined with the
view angles estimation procedure. There exist some
works for detection of the symmetry of an object in com-
puter vision, image processing and computer graphics
areas [26-28]. Our future work is to extend our method to
three dimensional tomography with unknown view
angles and combine the symmetry detection for the sym-
metrical object reconstruction.

Conclusions
The uniqueness and feasibility of tomography with
unknown view angles have been proved in the earlier
works, which offer the theoretical fundamentals for our
method. We have introduced an efficient reconstruction
procedure for 2D tomography with unknown view angles
by means of sMDS. The experimental results indicate our
method performs well with high quality image recon-
struction, even in the case of highly corrupted noisy data.
Our method would potentially provide an alternative
approach in dealing with special cases of tomography
with unknown acquisition parameters.

Observation
We made the following analytical statement based on the

observation from Figure 9. The  and  are two
FTVectors with dimensionality equal to the number of
the sampled points (the dots). One of the major goals of
the manifold embedding methods is to embed the high

dimensional vectors onto a low dimensional manifold.
The principle of existing dimension reduction methods is
that the distance between points in the low dimensional
space is consistent with those distances in the original
high dimensional space. During the transformation, the
pairwise distance between points would be preserved
optimally. In the figure, the high dimensional points are

 and . And the two dimensional points are the 

and  which lie on the circle. The lines from the origin

to  and  are perpendicular to  and  respec-

tively. The pairwise distance between point  and 
is consistent with the distance between the high dimen-

sional vectors  and . In other words, the internal
structure for the FTVectors is constrained to 1D sphere,
that is a circle. We can map the set of the FTVectors onto
the a set of points on the circle. The sorting of the points
on the circle can be used to orient the FTVectors.
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