6,110 research outputs found

    Doping Dependence of Polaron Hopping Energies in La(1-x)Ca(x)MnO(3) (0<= x<= 0.15)

    Full text link
    Measurements of the low-frequency (f<= 100 kHz) permittivity at T<= 160 K and dc resistivity (T<= 430 K) are reported for La(1-x)Ca(x)MnO(3) (0<= x<= 0.15). Static dielectric constants are determined from the low-T limiting behavior of the permittivity. The estimated polarizability for bound holes ~ 10^{-22} cm^{-3} implies a radius comparable to the interatomic spacing, consistent with the small polaron picture established from prior transport studies near room temperature and above on nearby compositions. Relaxation peaks in the dielectric loss associated with charge-carrier hopping yield activation energies in good agreement with low-T hopping energies determined from variable-range hopping fits of the dc resistivity. The doping dependence of these energies suggests that the orthorhombic, canted antiferromagnetic ground state tends toward an insulator-metal transition that is not realized due to the formation of the ferromagnetic insulating state near Mn(4+) concentration ~ 0.13.Comment: PRB in press, 5 pages, 6 figure

    Factorizations of Elements in Noncommutative Rings: A Survey

    Full text link
    We survey results on factorizations of non zero-divisors into atoms (irreducible elements) in noncommutative rings. The point of view in this survey is motivated by the commutative theory of non-unique factorizations. Topics covered include unique factorization up to order and similarity, 2-firs, and modular LCM domains, as well as UFRs and UFDs in the sense of Chatters and Jordan and generalizations thereof. We recall arithmetical invariants for the study of non-unique factorizations, and give transfer results for arithmetical invariants in matrix rings, rings of triangular matrices, and classical maximal orders as well as classical hereditary orders in central simple algebras over global fields.Comment: 50 pages, comments welcom

    Submillimeter satellite radiometer Final engineering report

    Get PDF
    All solid-state superheterodyne Dicke radiometer for submillimeter wavelength

    Strain-controlled band engineering and self-doping in ultrathin LaNiO3_3 films

    Full text link
    We report on a systematic study of the temperature-dependent Hall coefficient and thermoelectric power in ultra-thin metallic LaNiO3_3 films that reveal a strain-induced, self-doping carrier transition that is inaccessible in the bulk. As the film strain varies from compressive to tensile at fixed composition and stoichiometry, the transport coefficients evolve in a manner strikingly similar to those of bulk hole-doped superconducting cuprates with varying doping level. Density functional calculations reveal that the strain-induced changes in the transport properties are due to self-doping in the low-energy electronic band structure. The results imply that thin-film epitaxy can serve as a new means to achieve hole-doping in other (negative) charge-transfer gap transition metal oxides without resorting to chemical substitution

    Magnon Heat Transport in doped La2CuO4\rm La_2CuO_4

    Full text link
    We present results of the thermal conductivity of La2CuO4\rm La_2CuO_4 and La1.8Eu0.2CuO4\rm La_{1.8}Eu_{0.2}CuO_4 single-crystals which represent model systems for the two-dimensional spin-1/2 Heisenberg antiferromagnet on a square lattice. We find large anisotropies of the thermal conductivity, which are explained in terms of two-dimensional heat conduction by magnons within the CuO2_2 planes. Non-magnetic Zn substituted for Cu gradually suppresses this magnon thermal conductivity κmag\kappa_{\mathrm{mag}}. A semiclassical analysis of κmag\kappa_{\mathrm{mag}} is shown to yield a magnon mean free path which scales linearly with the reciprocal concentration of Zn-ions.Comment: 4 pages, 3 figure

    Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation

    Full text link
    In this paper we provide a characterization of intrinsic Lipschitz graphs in the sub-Riemannian Heisenberg groups in terms of their distributional gradients. Moreover, we prove the equivalence of different notions of continuous weak solutions to the equation \phi_y+ [\phi^{2}/2]_t=w, where w is a bounded function depending on \phi

    Periodic orbits of the ensemble of Sinai-Arnold cat maps and pseudorandom number generation

    Full text link
    We propose methods for constructing high-quality pseudorandom number generators (RNGs) based on an ensemble of hyperbolic automorphisms of the unit two-dimensional torus (Sinai-Arnold map or cat map) while keeping a part of the information hidden. The single cat map provides the random properties expected from a good RNG and is hence an appropriate building block for an RNG, although unnecessary correlations are always present in practice. We show that introducing hidden variables and introducing rotation in the RNG output, accompanied with the proper initialization, dramatically suppress these correlations. We analyze the mechanisms of the single-cat-map correlations analytically and show how to diminish them. We generalize the Percival-Vivaldi theory in the case of the ensemble of maps, find the period of the proposed RNG analytically, and also analyze its properties. We present efficient practical realizations for the RNGs and check our predictions numerically. We also test our RNGs using the known stringent batteries of statistical tests and find that the statistical properties of our best generators are not worse than those of other best modern generators.Comment: 18 pages, 3 figures, 9 table

    HST-NICMOS Observations of Terzan 5: Stellar Content and Structure of the Core

    Get PDF
    We report results from HST-NICMOS imaging of the extremely dense core of the globular cluster Terzan 5. This highly obscured bulge cluster has been estimated to have one of the highest collision rates of any galactic globular cluster, making its core a particularly conducive environment for the production of interacting binary systems. We have reconstructed high-resolution images of the central 19"x19" region of Terzan 5 by application of the drizzle algorithm to dithered NIC2 images in the F110W, F187W, and F187N near-infrared filters. We have used a DAOPHOT/ALLSTAR analysis of these images to produce the deepest color-magnitude diagram (CMD) yet obtained for the core of Terzan 5. We have also analyzed the parallel 11"X11" NIC1 field, centered 30" from the cluster center and imaged in F110W and F160W, and an additional NIC2 field that is immediately adjacent to the central field. This imaging results in a clean detection of the red-giant branch and horizontal branch in the central NIC2 field, and the detection of these plus the main-sequence turnoff and the upper main sequence in the NIC1 field. We have constructed an H versus J-H CMD for the NIC1 field. We obtain a new distance estimate of 8.7 kpc, which places Terzan 5 within less than 1 kpc of the galactic center. We have also determined a central surface-density profile which results in a maximum likelihood estimate of 7.9" +/- 0.6" for the cluster core radius. We discuss the implications of these results for the dynamical state of Terzan 5.Comment: 17 pages, 9 figures, accepted for publication in ApJ, for May 20, 200

    The Red-Sequence Luminosity Function in Galaxy Clusters since z~1

    Full text link
    We use a statistical sample of ~500 rich clusters taken from 72 square degrees of the Red-Sequence Cluster Survey (RCS-1) to study the evolution of ~30,000 red-sequence galaxies in clusters over the redshift range 0.35<z<0.95. We construct red-sequence luminosity functions (RSLFs) for a well-defined, homogeneously selected, richness limited sample. The RSLF at higher redshifts shows a deficit of faint red galaxies (to M_V=> -19.7) with their numbers increasing towards the present epoch. This is consistent with the `down-sizing` picture in which star-formation ended at earlier times for the most massive (luminous) galaxies and more recently for less massive (fainter) galaxies. We observe a richness dependence to the down-sizing effect in the sense that, at a given redshift, the drop-off of faint red galaxies is greater for poorer (less massive) clusters, suggesting that star-formation ended earlier for galaxies in more massive clusters. The decrease in faint red-sequence galaxies is accompanied by an increase in faint blue galaxies, implying that the process responsible for this evolution of faint galaxies is the termination of star-formation, possibly with little or no need for merging. At the bright end, we also see an increase in the number of blue galaxies with increasing redshift, suggesting that termination of star-formation in higher mass galaxies may also be an important formation mechanism for higher mass ellipticals. By comparing with a low-redshift Abell Cluster sample, we find that the down-sizing trend seen within RCS-1 has continued to the local universe.Comment: ApJ accepted. 11 pages, 5 figure
    corecore