22 research outputs found

    Adaptive and Innate Immune Responses in Autism: Rationale for Therapeutic Use of Intravenous Immunoglobulin

    Get PDF
    Autism is a complex polygenic neurodevelopmental disorder characterized by deficits in communication and social interactions as well as specific stereotypical behaviors. Both genetic and environmental factors appear to contribute to the pathogenesis of autism. Accumulating data including changes in immune responses, linkage to major histocompatibility complex antigens, and the presence of autoantibodies to neural tissues/antigens suggest that the immune system plays an important role in its pathogenesis. In this brief review, we discuss the data regarding changes in both innate and adaptive immunity in autism and the evidence in favor of the role of the immune system, especially of maternal autoantibodies in the pathogenesis of a subset of patients with autism. The rationale for possible therapeutic use of intravenous immunoglobulin is also discussed

    A lack of association between elevated serum levels of S100B protein and autoimmunity in autistic children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>S100B is a calcium-binding protein that is produced primarily by astrocytes. Increased serum S100B protein levels reflect neurological damage. Autoimmunity may have a role in the pathogenesis of autism in some patients. Autoantibodies may cross the blood-brain barrier and combine with brain tissue antigens, forming immune complexes and resulting in neurological damage. We are the first to investigate the relationship between serum levels of S100B protein, a marker of neuronal damage, and antiribosomal P protein antibodies in autistic children.</p> <p>Methods</p> <p>Serum S100B protein and antiribosomal P antibodies were measured in 64 autistic children in comparison to 46 matched healthy children.</p> <p>Results</p> <p>Autistic children had significantly higher serum S100B protein levels than healthy controls (<it>P </it>< 0.001). Children with severe autism had significantly higher serum S100B protein than patients with mild to moderate autism (<it>P </it>= 0.01). Increased serum levels of antiribosomal P antibodies were found in 40.6% of autistic children. There were no significant correlations between serum levels of S100B protein and antiribosomal P antibodies (<it>P </it>= 0.29).</p> <p>Conclusions</p> <p>S100B protein levels were elevated in autistic children and significantly correlated to autistic severity. This may indicate the presence of an underlying neuropathological condition in autistic patients. Antiribosomal P antibodies may not be a possible contributing factor to the elevated serum levels of S100B protein in some autistic children. However, further research is warranted to investigate the possible link between serum S100B protein levels and other autoantibodies, which are possible indicators of autoimmunity to central nervous system in autism.</p

    The neuropathology of autism: where do we stand?

    No full text
    The neurobiology and neuropathology of the autism spectrum disorders (ASD) remain poorly defined. Brain imaging studies suggest that the deficits in social cognition, language, communication and stereotypical patterns of behaviour that are manifest in individuals with ASD, are related to functional disturbance and 'disconnectivity', affecting multiple brain regions. These impairments are considered to arise as a consequence of abnormal pre- and postnatal development of a distributed neural network. Examination of the brain post mortem continues to provide fundamental information concerning the cellular and subcellular alterations that take place in the brain of autistic individuals. Neuropathological observations that have emerged over the past decade also point towards early pre- and postnatal developmental abnormalities that involve multiple regions of the brain, including the cerebral cortex, cortical white matter, amygdala, brainstem and cerebellum. However, the neuropathology of autism is yet to be clearly defined, and there are several areas that remain open to further investigation. In this respect, more concerted efforts are required to examine the various aspects of cellular pathology affecting the brain in autism. This paper briefly highlights four key areas that warrant further evaluation

    Antioxidantes da dieta como inibidores da nefrotoxicidade induzida pelo antitumoral cisplatina Dietary antioxidants as inhibitors of cisplatin-induced nephrotoxicity

    No full text
    A cisplatina é uma droga antineoplásica altamente efetiva contra vários tipos de cânceres humanos, tais como tumores do testículo e ovário, câncer da cabeça e pescoço e câncer do pulmão. Entretanto, a nefrotoxicidade é um dos principais efeitos colaterais da terapia com a cisplatina. A gravidade da nefrotoxicidade induzida pela cisplatina está relacionada com a concentração de platina nos rins. As evidências mostram que a nefrotoxicidade induzida pela cisplatina é atribuída ao dano oxidativo resultante da geração de radicais livres, e que a administração de antioxidantes é eficiente na inibição destes efeitos colaterais. Uma abordagem alternativa para proteger os roedores dos efeitos colaterais da cisplatina é o uso de conhecidos antioxidantes da dieta. Alguns estudos têm sido realizados para diminuir a peroxidação lipídica e os efeitos citotóxicos induzidos pela cisplatina, com o emprego de antioxidantes da dieta, tais como, selenito de sódio, vitaminas C e E, curcumina e o carotenóide bixina. Nós sugerimos que aqueles antioxidantes da dieta têm efeito nefroprotetor, e que os mecanismos antioxidantes destes compostos deveriam ser explorados durante a quimioterapia com a cisplatina.<br>Cisplatin is a highly effective antineoplastic drug used against several types of human cancers, such as testicular and ovarian tumors; head and neck; and lung cancer. However, nephrotoxicity is one of the most important side-effects of cisplatin therapy. The severity of cisplatin nephrotoxicity is related to platinum concentration in the kidneys. There is a growing amount of evidence that cisplatin-induced nephrotoxicity is ascribed to oxidative damage resulting from free radical generation and that the administration of antioxidants is efficient in inhibiting these side effects. An alternative approach aiming to protect rodents against cisplatin side-effects is the introduction of known dietary antioxidants. Some studies have been conducted to decrease cisplatin-induced lipid peroxidation and cytotoxic effects by using such dietary antioxidants, including sodium selenite; vitamins C and E; curcumin and the carotenoid bixin. We suggest that these dietary antioxidants have a nephroprotective effect, and that their antioxidant mechanisms should be further explored during cisplatin chemotherapy

    Reduced serum concentrations of 25-hydroxy vitamin D in children with autism: Relation to autoimmunity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aside from the skeletal health affection, vitamin D deficiency has been implicated as a potential environmental factor triggering for some autoimmune disorders. Vitamin D might play a role in the regulation of the production of auto-antibodies. Immunomodulatory effects of vitamin D may act not only through modulation of T-helper cell function, but also through induction of CD4<sup>+</sup>CD25<sup>high</sup> regulatory T-cells. We are the first to investigate the relationship between serum levels of 25-hydroxy vitamin D and anti-myelin-associated glycoprotein (anti-MAG) auto-antibodies in autistic children.</p> <p>Methods</p> <p>Serum levels of 25-hydroxy vitamin D and anti-MAG auto-antibodies were measured in 50 autistic children, aged between 5 and 12 years, and 30 healthy-matched children. Serum 25-hydroxy vitamin D levels 10–30 ng/mL and < 10 ng/mL were defined as vitamin D insufficiency and deficiency, respectively.</p> <p>Results</p> <p>Autistic children had significantly lower serum levels of 25-hydroxy vitamin D than healthy children (<it>P</it> < 0.001) with 40% and 48% being vitamin D deficient and insufficient, respectively. Serum 25-hydroxy vitamin D had significant negative correlations with Childhood Autism Rating Scale (<it>P</it> < 0.001). Increased levels of serum anti-MAG auto-antibodies were found in 70% of autistic patients. Serum 25-hydroxy vitamin D levels had significant negative correlations with serum levels of anti-MAG auto-antibodies (<it>P</it> < 0.001).</p> <p>Conclusions</p> <p>Vitamin D deficiency was found in some autistic children and this deficiency may contribute to the induction of the production of serum anti-MAG auto-antibodies in these children. However, future studies looking at a potential role of vitamin D in the pathophysiology and treatment of autism are warranted.</p
    corecore