1,105 research outputs found

    An Effective Strong Gravity induced by QCD

    Full text link
    We show that, when quantized on a curved ``intra-hadronic background'', QCD induces an effective pseudo gravitational interaction with gravitational and cosmological constants in the GeV range.Comment: 9 pages, latex, no figures; to appear in Mod.Phys.Lett.

    Decoherence in quantum dots due to real and virtual transitions: a non-perturbative calculation

    Full text link
    We investigate theoretically acoustic phonon induced decoherence in quantum dots. We calculate the dephasing of fundamental (interband or intraband) optical transitions due to real and virtual transitions with higher energy levels. Up to two acoustic phonon processes (absorption and/or emission) are taken into account simultaneously in a non-perturbative manner. An analytic expression of acoustic phonon induced broadening is given as a function of the electron-phonon matrix elements and is physically interpreted. The theory is applied to the dephasing of intersublevel transitions in self-assembled quantum dots.Comment: 8 pages, 4 figure

    Parton-Hadron duality in event generators

    Full text link
    The validity of local parton-hadron duality within the framework of HERWIG and JETSET event generators is investigated. We concentrate on e+e{\rm e}^{+}{\rm e}^{-} annihilations in LEP 2 energy range as these interactions provide theoretically the cleanest condition for the discussion of this concept.Comment: PRA-HEP-92/14, 10 pages and 7 PS figures obtainable upon request, LATEX. email transmission errors corrected. Requests for figures can be sent on the above ID or to CHYLA@CSPGAS1

    The effect of extreme confinement on the nonlinear-optical response of quantum wires

    Full text link
    This work focuses on understanding the nonlinear-optical response of a 1-D quantum wire embedded in 2-D space when quantum-size effects in the transverse direction are minimized using an extremely weighted delta function potential. Our aim is to establish the fundamental basis for understanding the effect of geometry on the nonlinear-optical response of quantum loops that are formed into a network of quantum wires. Using the concept of leaky quantum wires, it is shown that in the limit of full confinement, the sum rules are obeyed when the transverse infinite-energy continuum states are included. While the continuum states associated with the transverse wavefunction do not contribute to the nonlinear optical response, they are essential to preserving the validity of the sum rules. This work is a building block for future studies of nonlinear-optical enhancement of quantum graphs (which include loops and bent wires) based on their geometry. These properties are important in quantum mechanical modeling of any response function of quantum-confined systems, including the nonlinear-optical response of any system in which there is confinement in at leat one dimension, such as nanowires, which provide confinement in two dimensions

    Thermal breakdown of coherent backscattering: a case study of quantum duality

    Full text link
    We investigate coherent backscattering of light by two harmonically trapped atoms in the light of quantitative quantum duality. Including recoil and Doppler shift close to an optical resonance, we calculate the interference visibility as well as the amount of which-path information, both for zero and finite temperature.Comment: published version with minor changes and an added figur

    Achieving ground-state polar molecular condensates by chainwise atom-molecule adiabatic passage

    Full text link
    We generalize the idea of chainwise stimulated Raman adiabatic passage (STIRAP) [Kuznetsova \textit{et al.} Phys. Rev. A \textbf{78}, 021402(R) (2008)] to a photoassociation-based chainwise atom-molecule system, with the goal of directly converting two-species atomic Bose-Einstein condensates (BEC) into a ground polar molecular BEC. We pay particular attention to the intermediate Raman laser fields, a control knob inaccessible to the usual three-level model. We find that an appropriate exploration of both the intermediate laser fields and the stability property of the atom-molecule STIRAP can greatly reduce the power demand on the photoassociation laser, a key concern for STIRAPs starting from free atoms due to the small Franck-Condon factor in the free-bound transition.Comment: 8 pages, 2 figures, to appear in Phy. Rev.

    The non dissipative damping of the Rabi oscillations as a "which-path" information

    Full text link
    Rabi oscillations may be viewed as an interference phenomenon due to a coherent superposition of different quantum paths, like in the Young's two-slit experiment. The inclusion of the atomic external variables causes a non dissipative damping of the Rabi oscillations. More generally, the atomic translational dynamics induces damping in the correlation functions which describe non classical behaviors of the field and internal atomic variables, leading to the separability of these two subsystems. We discuss on the possibility of interpreting this intrinsic decoherence as a "which-way" information effect and we apply to this case a quantitative analysis of the complementarity relation as introduced by Englert [Phys. Rev. Lett. \textbf{77}, 2154 (1996)].Comment: 5 pages, 2 figure

    Probe spectroscopy in an operating magneto-optical trap: the role of Raman transitions between discrete and continuum atomic states

    Full text link
    We report on cw measurements of probe beam absorption and four-wave-mixing spectra in a 85^{85}Rb magneto-optical trap taken while the trap is in operation. The trapping beams are used as pump light. We concentrate on the central feature of the spectra at small pump-probe detuning and attribute its narrow resonant structures to the superposition of Raman transitions between light-shifted sublevels of the ground atomic state and to atomic recoil processes. These two contributions have different dependencies on trap parameters and we show that the former is inhomogeneously broadened. The strong dependence of the spectra on the probe-beam polarization indicates the existence of large optical anisotropy of the cold-atom sample, which is attributed to the recoil effects. We point out that the recoil-induced resonances can be isolated from other contributions, making pump-probe spectroscopy a highly sensitive diagnostic tool for atoms in a working MOT.Comment: 9 pages, 8 figure

    Double barrier potentials for matter-wave gap solitons

    Full text link
    We investigate collisions of solitons of the gap type, supported by a lattice potential in repulsive Bose-Einstein condensates, with an effective double-barrier potential that resembles a Fabry-Perot cavity. We identify conditions under which the trapping of the entire incident soliton in the cavity is possible. Collisions of the incident soliton with an earlier trapped one are considered too. In the latter case, many outcomes of the collisions are identified, including merging, release of the trapped soliton with or without being replaced by the incoming one, and trapping of both solitons.Comment: 5 pages, 4 figure
    corecore