58,714 research outputs found
On a nonlinear theory of elastic shells
Nonlinear theory of elastic shells with deformation gradient
Bose-Einstein condensate in a rapidly rotating non-symmetric trap
A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional
harmonic trap can be described with the lowest Landau-level set of
single-particle states. The condensate wave function psi(x,y) is a Gaussian
exp(-r^2/2), multiplied by an analytic function f(z) of the complex variable z=
x+ i y. The criterion for a quantum phase transition to a non-superfluid
correlated many-body state is usually expressed in terms of the ratio of the
number of particles to the number of vortices. Here, a similar description
applies to a rapidly rotating non-symmetric two-dimensional trap with arbitrary
quadratic anisotropy (omega_x^2 < omega_y^2). The corresponding condensate wave
function psi(x,y) is a complex anisotropic Gaussian with a phase proportional
to xy, multiplied by an analytic function f(z), where z = x + i \beta_- y is a
stretched complex variable and 0< \beta_- <1 is a real parameter that depends
on the trap anisotropy and the rotation frequency. Both in the mean-field
Thomas-Fermi approximation and in the mean-field lowest Landau level
approximation with many visible vortices, an anisotropic parabolic density
profile minimizes the energy. An elongated condensate grows along the soft trap
direction yet ultimately shrinks along the tight trap direction. The criterion
for the quantum phase transition to a correlated state is generalized (1) in
terms of N/L_z, which suggests that a non-symmetric trap should make it easier
to observe this transition or (2) in terms of a "fragmented" correlated state,
which suggests that a non-symmetric trap should make it harder to observe this
transition. An alternative scenario involves a crossover to a quasi
one-dimensional condensate without visible vortices, as suggested by Aftalion
et al., Phys. Rev. A 79, 011603(R) (2009).Comment: 20 page
Voltage-dependent Block of the Cystic Fibrosis Transmembrane Conductance Regulator Cl- Channel by Two Closely Related Arylaminobenzoates
The gene defective in cystic fibrosis encodes a Cl- channel, the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is blocked by diphenylamine-2-carboxylate (DPC) when applied extracellularly at millimolar concentrations. We studied the block of CFTR expressed in Xenopus oocytes by DPC or by a closely related molecule, flufenamic acid (FFA). Block of whole-cell CFTR currents by bath-applied DPC or by FFA, both at 200 µM, requires several minutes to reach full effect. Blockade is voltage dependent, suggesting open-channel block: currents at positive potentials are not affected but currents at negative potentials are reduced. The binding site for both drugs senses ~40% of the electric field across the membrane, measured from the inside. In single-channel recordings from excised patches without blockers, the conductance was 8.0 ± 0.4 pS in symmetric 150 mM Cl^-. A subconductance state, measuring ~60% of the main conductance, was often observed. Bursts to the full open state lasting up to tens of seconds were uninterrupted at depolarizing membrane voltages. At hyperpolarizing voltages, bursts were interrupted by brief closures. Either DPC or FFA (50 µM) applied to the cytoplasmic or extracellular face of the channel led to an increase in flicker at V_m =-100 mV and not at V_m = +100 mV, in agreement with whole-cell experiments. DPC induced a higher frequency of flickers from the cytoplasmic side than the extracellular side. FFA produced longer closures than DPC; the FFA closed time was roughly equal (~ 1.2 ms) at -100 mV with application from either side. In cell-attached patch recordings with DPC or FFA applied to the bath, there was flickery block at V_m = -100 mV, confirming that the drugs permeate through the membrane to reach the binding site. The data are consistent with the presence of a single binding site for both drugs, reached from either end of the channel. Open-channel block by DPC or FFA may offer tools for use with site-directed mutagenesis to describe the permeation pathway
Low speed aerodynamic characteristics of an 0.075-scale F-15 airplane model at high angles of attack and sideslip
An 0.075 scale model representative of the F-15 airplane was tested in the Ames 12 foot pressure wind tunnel at a Mach number of 0.16 to determine static longitudinal and lateral directional characteristics at spin attitudes for Reynolds numbers from 1.48 to 16.4 million per meter (0.45 to 5.0 million per foot). Angles of attack ranged from 0 to +90 deg and from -40 deg to -80 deg while angles of sideslip were varied from -20 deg to +30 deg. Data were obtained for nacelle inlet ramp angles of 0 to 11 deg with the left and right stabilators deflected 0, -25 deg, and differentially 5 deg and -5 deg. The normal pointed nose and two alternate nose shapes were also tested along with several configurations of external stores. Analysis of the results indicate that at higher Reynolds numbers there is a slightly greater tendency to spin inverted than at lower Reynolds numbers. Use of a hemispherical nose in place of the normal pointed nose provided an over correction in simulating yawing moment effects at high Reynolds numbers
Regions of beta 2 and beta 4 responsible for differences between the steady state dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors
We constructed chimeras of the rat beta 2 and beta 4 neuronal nicotinic subunits to locate the regions that contribute to differences between the acetylcholine (ACh) dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 receptors. Expressed in Xenopus oocytes, the alpha 3 beta 2 receptor displays an EC50 for ACh approximately 20-fold less than the EC50 of the alpha 3 beta 4 receptor. The apparent Hill slope (n(app)) of alpha 3 beta 2 is near one whereas the alpha 3 beta 4 receptor displays an n(app) near two. Substitutions within the first 120 residues convert the EC50 for ACh from one wild-type value to the other. Exchanging just beta 2:104-120 for the corresponding region of beta 4 shifts the EC50 of ACh dose-response relationship in the expected direction but does not completely convert the EC50 of the dose- response relationship from one wild-type value to the other. However, substitutions in the beta 2:104-120 region do account for the relative sensitivity of the alpha 3 beta 2 receptor to cytisine, tetramethylammonium, and ACh. The expression of beta 4-like (strong) cooperativity requires an extensive region of beta 4 (beta 4:1-301). Relatively short beta 2 substitutions (beta 2:104-120) can reduce cooperativity to beta 2-like values. The results suggest that amino acids within the first 120 residues of beta 2 and the corresponding region of beta 4 contribute to an agonist binding site that bridges the alpha and beta subunits in neuronal nicotinic receptors
Optimization of Network Robustness to Waves of Targeted and Random Attack
We study the robustness of complex networks to multiple waves of simultaneous
(i) targeted attacks in which the highest degree nodes are removed and (ii)
random attacks (or failures) in which fractions and respectively of
the nodes are removed until the network collapses. We find that the network
design which optimizes network robustness has a bimodal degree distribution,
with a fraction of the nodes having degree k_2= (\kav - 1 +r)/r and the
remainder of the nodes having degree , where \kav is the average
degree of all the nodes. We find that the optimal value of is of the order
of for
(De)Constructing Dimensions
We construct renormalizable, asymptotically free, four dimensional gauge
theories that dynamically generate a fifth dimension.Comment: 10 pages, late
Repulsive Fermions in Optical Lattices: Phase separation versus Coexistence of Antiferromagnetism and d-Superfluidity
We investigate a system of fermions on a two-dimensional optical square
lattice in the strongly repulsive coupling regime. In this case, the
interactions can be controlled by laser intensity as well as by Feshbach
resonance. We compare the energetics of states with resonating valence bond
d-wave superfluidity, antiferromagnetic long range order and a homogeneous
state with coexistence of superfluidity and antiferromagnetism. We show that
the energy density of a hole has a minimum at doping that
signals phase separation between the antiferromagnetic and d-wave paired
superfluid phases. The energy of the phase-separated ground state is however
found to be very close to that of a homogeneous state with coexisting
antiferromagnetic and superfluid orders. We explore the dependence of the
energy on the interaction strength and on the three-site hopping terms and
compare with the nearest neighbor hopping {\it t-J} model
- …