91,085 research outputs found
First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures
We investigate the equation of state and elastic properties of hcp iron at
high pressures and high temperatures using first principles linear response
linear-muffin-tin-orbital method in the generalized-gradient approximation. We
calculate the Helmholtz free energy as a function of volume, temperature, and
volume-conserving strains, including the electronic excitation contributions
from band structures and lattice vibrational contributions from quasi-harmonic
lattice dynamics. We perform detailed investigations on the behavior of elastic
moduli and equation of state properties as functions of temperature and
pressure, including the pressure-volume equation of state, bulk modulus, the
thermal expansion coefficient, the Gruneisen ratio, and the shock Hugoniot.
Detailed comparison has been made with available experimental measurements and
theoretical predictions.Comment: 33 pages, 12 figure
Thermal effects on lattice strain in hcp Fe under pressure
We compute the c/a lattice strain versus temperature for nonmagnetic hcp iron
at high pressures using both first-principles linear response quasiharmonic
calculations based on the full potential linear-muffin-tin-orbital (LMTO)
method and the particle-in-cell (PIC) model for the vibrational partition
function using a tight-binding total-energy method. The tight-binding model
shows excellent agreement with the all-electron LMTO method. When hcp structure
is stable, the calculated geometric mean frequency and Helmholtz free energy of
hcp Fe from PIC and linear response lattice dynamics agree very well, as does
the axial ratio as a function of temperature and pressure. On-site
anharmonicity proves to be small up to the melting temperature, and PIC gives a
good estimate of its sign and magnitude. At low pressures, hcp Fe becomes
dynamically unstable at large c/a ratios, and the PIC model might fail where
the structure approaches lattice instability. The PIC approximation describes
well the vibrational behavior away from the instability, and thus is a
reasonable approach to compute high temperature properties of materials. Our
results show significant differences from earlier PIC studies, which gave much
larger axial ratio increases with increasing temperature, or reported large
differences between PIC and lattice dynamics results.Comment: 9 figure
Secondary Irregularities in the Equatorial Electrojet
Instrumentation techniques and autocorrelation analysis procedures for secondary equatorial electrojet irregularitie
Study of transition temperatures in superconductors Final report, 11 Mar. 1968 - 10 Mar. 1970
Thermodynamic and electrical properties of niobium stannide and other superconductor
Large Magnetic Fields and Motions of OH Masers in W75 N
We report on a second epoch of VLBA observations of the 1665 and 1667 MHz OH
masers in the massive star-forming region W75 N. We find evidence to confirm
the existence of very strong (~40 mG) magnetic fields near source VLA 2. The
masers near VLA 2 are dynamically distinct and include a very bright spot
apparently moving at 50 km/s relative to those around VLA 1. This fast-moving
spot may be an example of a rare class of OH masers seen in outflows in
star-forming regions. Due to the variability of these masers and the rapidity
of their motions, tracking these motions will require multiple observations
over a significantly shorter time baseline than obtained here. Proper motions
of the masers near VLA 1 are more suggestive of streaming along magnetized
shocks rather than Keplerian rotation in a disk. The motions of the easternmost
cluster of masers in W75 N (B) may be tracing slow expansion around an unseen
exciting source.Comment: 7 pages including 4 figures (2 color) & 3 tables, to appear in Ap
First-principles thermoelasticity of bcc iron under pressure
We investigate the elastic and isotropic aggregate properties of
ferromagnetic bcc iron as a function of temperature and pressure by computing
the Helmholtz free energies for the volume-conserving strained structures using
the first-principles linear response linear-muffin-tin-orbital method and the
generalized-gradient approximation. We include the electronic excitation
contributions to the free energy from the band structures, and phonon
contributions from quasi-harmonic lattice dynamics. We make detailed
comparisons between our calculated elastic moduli and their temperature and
pressure dependences with available experimental and theoretical data.Comment: 5 figures, 2 table
- …