586 research outputs found

    Stock and Bulk in the Latest Newton Scholarship

    Get PDF
    essay review of books on Newton by Guicciardini, Iliffe, and Boran/Feingol

    Boekbespreking van: Hendrik de Man

    Get PDF

    Persistent currents in Moebius strips

    Get PDF
    Relation between the geometry of a two-dimensional sample and its equilibrium physical properties is exemplified here for a system of non-interacting electrons on a Moebius strip. Dispersion relation for a clean sample is derived and its persistent current under moderate disorder is elucidated, using statistical analysis pertinent to a single sample experiment. The flux periodicity is found to be distinct from that in a cylindrical sample, and the essential role of disorder in the ability to experimentally identify a Moebius strip is pointed out.Comment: 5 pages, 4 figure

    Deaf, Dumb, and Chatting Robots, Enabling Distributed Computation and Fault-Tolerance Among Stigmergic Robot

    Get PDF
    We investigate ways for the exchange of information (explicit communication) among deaf and dumb mobile robots scattered in the plane. We introduce the use of movement-signals (analogously to flight signals and bees waggle) as a mean to transfer messages, enabling the use of distributed algorithms among the robots. We propose one-to-one deterministic movement protocols that implement explicit communication. We first present protocols for synchronous robots. We begin with a very simple coding protocol for two robots. Based on on this protocol, we provide one-to-one communication for any system of n \geq 2 robots equipped with observable IDs that agree on a common direction (sense of direction). We then propose two solutions enabling one-to-one communication among anonymous robots. Since the robots are devoid of observable IDs, both protocols build recognition mechanisms using the (weak) capabilities offered to the robots. The first protocol assumes that the robots agree on a common direction and a common handedness (chirality), while the second protocol assumes chirality only. Next, we show how the movements of robots can provide implicit acknowledgments in asynchronous systems. We use this result to design asynchronous one-to-one communication with two robots only. Finally, we combine this solution with the schemes developed in synchronous settings to fit the general case of asynchronous one-to-one communication among any number of robots. Our protocols enable the use of distributing algorithms based on message exchanges among swarms of Stigmergic robots. Furthermore, they provides robots equipped with means of communication to overcome faults of their communication device

    Velocity-selective sublevel resonance of atoms with an array of current-carrying wires

    Full text link
    Resonance transitions between the Zeeman sublevels of optically-polarized Rb atoms traveling through a spatially periodic magnetic field are investigated in a radio-frequency (rf) range of sub-MHz. The atomic motion induces the resonance when the Zeeman splitting is equal to the frequency at which the moving atoms feel the magnetic field oscillating. Additional temporal oscillation of the spatially periodic field splits a motion-induced resonance peak into two by an amount of this oscillation frequency. At higher oscillation frequencies, it is more suitable to consider that the resonance is mainly driven by the temporal field oscillation, with its velocity-dependence or Doppler shift caused by the atomic motion through the periodic field. A theoretical description of motion-induced resonance is also given, with emphasis on the translational energy change associated with the internal transition.Comment: 7 pages, 3 figures, final versio

    Atom focusing by far-detuned and resonant standing wave fields: Thin lens regime

    Get PDF
    The focusing of atoms interacting with both far-detuned and resonant standing wave fields in the thin lens regime is considered. The thin lens approximation is discussed quantitatively from a quantum perspective. Exact quantum expressions for the Fourier components of the density (that include all spherical aberration) are used to study the focusing numerically. The following lens parameters and density profiles are calculated as functions of the pulsed field area θ\theta : the position of the focal plane, peak atomic density, atomic density pattern at the focus, focal spot size, depth of focus, and background density. The lens parameters are compared to asymptotic, analytical results derived from a scalar diffraction theory for which spherical aberration is small but non-negligible (θ1\theta \gg 1). Within the diffraction theory analytical expressions show that the focused atoms in the far detuned case have an approximately constant background density 0.5(10.635θ1/2)0.5(1-0.635\theta ^{- 1/2}) while the peak density behaves as % 3.83\theta ^{1/2}, the focal distance or time as θ1(1+1.27θ1/2)\theta ^{-1}(1+1.27\theta ^{- 1/2}), the focal spot size as 0.744θ3/40.744\theta ^{-3/4}, and the depth of focus as 1.91θ3/21.91\theta ^{- 3/2}. Focusing by the resonant standing wave field leads to a new effect, a Rabi- like oscillation of the atom density. For the far-detuned lens, chromatic aberration is studied with the exact Fourier results. Similarly, the degradation of the focus that results from angular divergence in beams or thermal velocity distributions in traps is studied quantitatively with the exact Fourier method and understood analytically using the asymptotic results. Overall, we show that strong thin lens focusing is possible with modest laser powers and with currently achievable atomic beam characteristics.Comment: 21 pages, 11 figure
    corecore