125 research outputs found

    Hope Comes in Many Forms: Out-Group Expressions of Hope Override Low Support and Promote Reconciliation in Conflicts

    Get PDF
    In conflicts, political attitudes are based to some extent on the perception of the out-group as sharing the goal of peace and supporting steps to achieve it. However, intractable conflicts are characterized by inconsistent and negative interactions, which prevent clear messages of out-group support. This problem calls for alternative ways to convey support between groups in conflict. One such method is emotional expressions. The current research tested whether, in the absence of out-group support for peace, observing expressions of out-group hope induces conciliatory attitudes. Results from two experimental studies, conducted within the Israeli–Palestinian conflict, revealed support for this hypothesis. Expressions of Palestinian hope induced acceptance of a peace agreement through Israeli hope and positive perceptions of the proposal when out-group support expressions were low. Findings demonstrate the importance of hope as a means of conveying information within processes of conflict resolution, overriding messages of low out-group support for peace

    Diabetic Ketoacidosis in the Pediatric Population with Type 1 Diabetes

    Get PDF
    Diabetic ketoacidosis (DKA) is a leading cause of morbidity and mortality in patients with type 1 diabetes (T1DM). Individuals familiar with this complication of diabetes should be able to identify the earliest signs and symptoms and act promptly to prevent further deterioration. However, even in patients with established diabetes, the rates of DKA are considerable. This chapter discusses in detail the various aspects of DKA in the pediatric population with T1DM. The prevalence and regional effects on the prevalence of DKA as well as the specific risk factors, whether disease, patient, or physician related, are reviewed. Patients with DKA experience a condition of starvation despite the abundance of metabolic substrate (i.e., glucose); the pathophysiological mechanisms responsible for the development of DKA are outlined. Next, a detailed discussion of the clinical aspects of DKA is provided. This includes the clinical findings at presentation, the approach to treatment, and potential complications. Prevention is the best method for reducing rates of DKA. Somewhat different factors apply in patients with new-onset diabetes when compared with those with established diabetes and these are reviewed

    Is hope good for motivating collective action in the context of climate change? Differentiating hope's emotion- and problem-focused coping functions

    Get PDF
    Climate change may be the most fundamental collective action problem of all time. To solve it through collective action, collective motivation is required. Yet, given the complexity and scale of the collective problem, it may be difficult for individuals to experience such motivation. Intriguingly, the experience of hope may increase collective motivation and action. We offer an integrative coping perspective on hope and collective action in the context of climate change. It explains how hope stimulates individuals' collective motivation to act against climate change (serving a problem-focused coping function), or fails to do so (serving an emotion-focused coping function). Testing these competing hypotheses, we conducted three studies that experimentally manipulated a core antecedent of hope (i.e., the perceived possibility of change) among US participants (total N = 1020). Across the board, this manipulation increased individuals' hope but not their collective motivation and action. Furthermore, collective motivation predicted collective action intentions across all three studies. Hoping thus seems to serve an emotion-focused coping function and hence may not increase the collective motivation required for collective action in the context of climate change

    Thiamine Pyrophosphate Riboswitches Are Targets for the Antimicrobial Compound Pyrithiamine

    Get PDF
    SummaryThiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria

    Control of mRNA Splicing by Intragenic RNA Activators of Stress Signaling: Potential Implications for Human Disease

    Get PDF
    A critical step in the cellular stress response is transient activation of the RNA-dependent protein kinase PKR by double-helical RNA, resulting in down-regulation of protein synthesis through phosphorylation of the α chain of translation initiation factor eIF2, a major PKR substrate. However, intragenic elements of 100–200 nucleotides in length within primary transcripts of cellular genes, exemplified by the tumor necrosis factor (TNF)-α gene and fetal and adult globin genes, are capable of forming RNA structures that potently activate PKR and thereby strongly enhance mRNA splicing efficiency. By inducing nuclear eIF2α phosphorylation, these PKR activator elements enable highly efficient early spliceosome assembly yet do not impair translation of the mature spliced mRNA. The TNF-α RNA activator of PKR folds into a compact pseudoknot that is highly conserved within the phylogeny. Upon excision of β-globin first intron, the RNA activator of PKR, located in exon 1, is silenced through strand displacement by a short sequence within exon 2, restricting thereby the ability to activate PKR to the splicing process without impeding subsequent synthesis of β-globin essential for survival. This activator/silencer mechanism likewise controls splicing of α-globin pre-mRNA, but the exonic locations of PKR activator and silencer sequences are reversed, demonstrating evolutionary flexibility. Impaired splicing efficiency may underlie numerous human β-thalassemia mutations that map to the β-globin RNA activator of PKR or its silencer. Even where such mutations change the encoded amino acid sequence during subsequent translation, they carry the potential of first impairing PKR-dependent mRNA splicing or shutoff of PKR activation needed for optimal translation

    Angiogenesis PET Tracer Uptake (<sup>68</sup>Ga-NODAGA-E[(cRGDyK)]<sub>2</sub>) in Induced Myocardial Infarction and Stromal Cell Treatment in Minipigs

    No full text
    Angiogenesis is considered integral to the reparative process after ischemic injury. The αvβ3 integrin is a critical modulator of angiogenesis and highly expressed in activated endothelial cells. 68Ga-NODAGA-E[(cRGDyK)]2 (RGD) is a positron-emission-tomography (PET) ligand targeted towards αvβ3 integrin. The aim was to present data for the uptake of RGD and correlate it with histology and to further illustrate the differences in angiogenesis due to porcine adipose-derived mesenchymal stromal cell (pASC) or saline treatment in minipigs after induction of myocardial infarction (MI). Three minipigs were treated with direct intra-myocardial injection of pASCs and two minipigs with saline. MI was confirmed by 82Rubidium (82Rb) dipyridamole stress PET. Mean Standardized Uptake Values (SUVmean) of RGD were higher in the infarct compared to non-infarct area one week and one month after MI in both pASC-treated (SUVmean: 1.23 vs. 0.88 and 1.02 vs. 0.86, p &lt; 0.05 for both) and non-pASC-treated minipigs (SUVmean: 1.44 vs. 1.07 and 1.26 vs. 1.04, p &lt; 0.05 for both). However, there was no difference in RGD uptake, ejection fractions, coronary flow reserves or capillary density in histology between the two groups. In summary, indications of angiogenesis were present in the infarcted myocardium. However, no differences between pASC-treated and non-pASC-treated minipigs could be demonstrated

    Intracoronary Injection of In Situ Forming Alginate Hydrogel Reverses Left Ventricular Remodeling After Myocardial Infarction in Swine

    Get PDF
    ObjectivesThis study sought to determine whether alginate biomaterial can be delivered effectively into the infarcted myocardium by intracoronary injection to prevent left ventricular (LV) remodeling early after myocardial infarction (MI).BackgroundAlthough injectable biomaterials can improve infarct healing and repair, the feasibility and effectiveness of intracoronary injection have not been studied.MethodsWe prepared a calcium cross-linked alginate solution that undergoes liquid to gel phase transition after deposition in infarcted myocardium. Anterior MI was induced in swine by transient balloon occlusion of left anterior descending coronary artery. At 4 days after MI, either alginate solution (2 or 4 ml) or saline was injected selectively into the infarct-related coronary artery. An additional group (n = 19) was treated with incremental volumes of biomaterial (1, 2, and 4 ml) or 2 ml saline and underwent serial echocardiography studies.ResultsExamination of hearts harvested after injection showed that the alginate crossed the infarcted leaky vessels and was deposited as hydrogel in the infarcted tissue. At 60 days, control swine experienced an increase in left ventricular (LV) diastolic area by 44%, LV systolic area by 45%, and LV mass by 35%. In contrast, intracoronary injection of alginate (2 and 4 ml) prevented and even reversed LV enlargement (p < 0.01). Post-mortem analysis showed that the biomaterial (2 ml) increased scar thickness by 53% compared with control (2.9 ± 0.1 mm vs. 1.9 ± 0.3 mm; p < 0.01) and was replaced by myofibroblasts and collagen.ConclusionsIntracoronary injection of alginate biomaterial is feasible, safe, and effective. Our findings suggest a new percutaneous intervention to improve infarct repair and prevent adverse remodeling after reperfused MI

    Oligonucleotide-assisted cleavage and ligation: a novel directional DNA cloning technology to capture cDNAs. Application in the construction of a human immune antibody phage-display library

    Get PDF
    The use of oligonucleotide-assisted cleavage and ligation (ONCL), a novel approach to the capture of gene repertoires, in the construction of a phage-display immune antibody library is described. ONCL begins with rapid amplification of cDNA ends to amplify all members equally. A single, specific cut near 5′ and/or 3′ end of each gene fragment (in single stranded form) is facilitated by hybridization with an appropriate oligonucleotide adapter. Directional cloning of targeted DNA is accomplished by ligation of a partially duplex DNA molecule (containing suitable restriction sites) and amplification with primers in constant regions. To demonstrate utility and reliability of ONCL, a human antibody repertoire was cloned from IgG mRNA extracted from human B-lymphocytes engrafted in Trimera mice. These mice were transplanted with peripheral blood lymphocytes from Candida albicans infected individuals and subsequently immunized with C.albicans glyceraldehyde-3-phosphate dehydrogenase (GAPDH). DNA sequencing showed that ONCL resulted in efficient capture of gene repertoires. Indeed, full representation of all V(H) families/segments was observed showing that ONCL did not introduce cloning biases for or against any V(H) family. We validated the efficiency of ONCL by creating a functional Fab phage-display library with a size of 3.3 × 10(10) and by selecting five unique Fabs against GAPDH antigen

    Retention and Functional Effect of Adipose-Derived Stromal Cells Administered in Alginate Hydrogel in a Rat Model of Acute Myocardial Infarction

    Get PDF
    Background. Cell therapy for heart disease has been proven safe and efficacious, despite poor cell retention in the injected area. Improving cell retention is hypothesized to increase the treatment effect. In the present study, human adipose-derived stromal cells (ASCs) were delivered in an in situ forming alginate hydrogel following acute myocardial infarction (AMI) in rats. Methods. ASCs were transduced with luciferase and tested for ASC phenotype. AMI was inducted in nude rats, with subsequent injection of saline (controls), 1 × 106 ASCs in saline or 1 × 106 ASCs in 1% (w/v) alginate hydrogel. ASCs were tracked by bioluminescence and functional measurements were assessed by magnetic resonance imaging (MRI) and 82rubidium positron emission tomography (PET). Results. ASCs in both saline and alginate hydrogel significantly increased the ejection fraction (7.2% and 7.8% at 14 days and 7.2% and 8.0% at 28 days, resp.). After 28 days, there was a tendency for decreased infarct area and increased perfusion, compared to controls. No significant differences were observed between ASCs in saline or alginate hydrogel, in terms of retention and functional salvage. Conclusion. ASCs improved the myocardial function after AMI, but administration in the alginate hydrogel did not further improve retention of the cells or myocardial function
    • …
    corecore