222 research outputs found

    From Posterior Sampling to Meaningful Diversity in Image Restoration

    Full text link
    Image restoration problems are typically ill-posed in the sense that each degraded image can be restored in infinitely many valid ways. To accommodate this, many works generate a diverse set of outputs by attempting to randomly sample from the posterior distribution of natural images given the degraded input. Here we argue that this strategy is commonly of limited practical value because of the heavy tail of the posterior distribution. Consider for example inpainting a missing region of the sky in an image. Since there is a high probability that the missing region contains no object but clouds, any set of samples from the posterior would be entirely dominated by (practically identical) completions of sky. However, arguably, presenting users with only one clear sky completion, along with several alternative solutions such as airships, birds, and balloons, would better outline the set of possibilities. In this paper, we initiate the study of meaningfully diverse image restoration. We explore several post-processing approaches that can be combined with any diverse image restoration method to yield semantically meaningful diversity. Moreover, we propose a practical approach for allowing diffusion based image restoration methods to generate meaningfully diverse outputs, while incurring only negligent computational overhead. We conduct extensive user studies to analyze the proposed techniques, and find the strategy of reducing similarity between outputs to be significantly favorable over posterior sampling. Code and examples are available in https://noa-cohen.github.io/MeaningfulDiversityInIRComment: Code and examples are available in https://noa-cohen.github.io/MeaningfulDiversityInI

    Band structure and electronic transport across Ta2O5/Nb:SrTiO3 interfaces

    Get PDF
    Resistive switching devices promise significant progress in memory and logic technologies. One of the hurdles toward their practical realization is the high forming voltages required for their initial activation, which may be incompatible with standard microelectronic architectures. This work studies the conduction mechanisms of Ta2O5 layers, one of the most studied materials for memristive devices, in their initial, as-fabricated state (“pre-forming”). By separating this aspect and resolving the current mechanisms, we provide the input that may guide future design of resistive switching devices. For this purpose, Ta2O5 layers were sputtered on conductive Nb:SrTiO3 substrates. Ta2O5/Nb:SrTiO3 structures exhibit diode behavior with an ideality factor of n ≈ 1.3 over four current decades. X-ray photoelectron spectroscopy analysis of the interfacial band offsets reveals a barrier of 1.3 ± 0.3 eV for electrons injected from the semiconductor into Ta2O5. Temperature-dependent current–voltage analysis exhibits rectifying behavior. While several conduction mechanisms produce good fits to the data, comparing the physical parameters of these models to the expected physical parameters led us to conclude that trap-assisted tunneling (TAT) is the most likely conduction mechanism. Fitting the data using a recent TAT model and with the barrier that was measured by spectroscopy fully captures the temperature dependence, further validating this conduction mechanism.Fil: Miron, Dror. Technion - Israel Institute of Technology; IsraelFil: Cohen Azarzar, Dana. Technion - Israel Institute of Technology; IsraelFil: Segev, Noa. Technion - Israel Institute of Technology; IsraelFil: Baskin, Maria. Technion - Israel Institute of Technology; IsraelFil: Palumbo, Félix Roberto Mario. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Tecnológica Nacional. Facultad Regional Buenos Aires. Unidad de Investigación y Desarrollo de las Ingenierías; ArgentinaFil: Yalon, Eilam. Technion - Israel Institute of Technology; IsraelFil: Kornblum, Lior. Technion - Israel Institute of Technology; Israe

    Dynamic assessment of the tear film muco-aqueous and lipid layers using a novel tear film imager (TFI)

    Get PDF
    Purpose The objective of the study was to assess a new technology, the tear film imager (TFI), which can dynamically image the muco-aqueous and lipid layers. Methods Prospective pilot case series of individuals with and without dry eye (DE). Two sequential images were obtained with the TFI. Measurements were assessed for reproducibility and compared with clinically derived DE metrics. Individuals were grouped into DE categories based on signs of DE. Results 49 patients participated in the study with a mean age of 58.8 years (SD 15.9) and a female majority (69%). Reproducibility of the muco-aqueous layer thickness (MALT) was excellent (r=0.88). MALT measurements significantly correlated with the Schirmer score (r=0.31). Lipid break up time (LBUT) as measured by the TFI significantly correlated with the clinical measure of tear break up time (TBUT) (r=0.73). MALT and LBUT were significantly thinner and shorter, respectively, in the DE groups (mild–moderate and severe) compared with the control group. When comparing TFI parameters to clinically assessed signs, sensitivity of the device was 87% and specificity was 88%. Conclusion The TFI is the first machine capable of reproducibly measuring muco-aqueous thickness in human subjects which correlates with Schirmer score. In parallel, it assesses other important aspects of tear film function which correlate with clinician assessed DE metrics
    corecore