108,897 research outputs found

    Gene expression analysis in microdissected renal tissue - Current challenges and strategies

    Get PDF
    The architecture and compartmentalization of the kidney has stimulated the development of an array of microtechniques to study the functional differences between the distinct nephron segments. With the vast amounts of genomic sequence data now available, the groundwork has been laid for a comprehensive characterization of the molecular pathways defining the differences in nephron function. With the development of sensitive gene expression techniques the tools for a comprehensive molecular analysis of specific renal microenvironments have been provided: Quantitative RT-PCR technologies now allow the analysis of specific mRNAs from as little as single microdissected renal cells. A more global view of gene expression regulation is a logical development from the application of large scale profiling techniques. In this review, we will discuss the power and pitfalls of these approaches, including their potential for the functional characterization of nephron heterogeneity and diagnostic application in renal disease. Copyright (C) 2002 S. Karger AG, Basel

    Entanglement spectroscopy of a driven solid-state qubit and its detector

    Full text link
    We study the asymptotic dynamics of a driven quantum two level system coupled via a quantum detector to the environment. We find multi-photon resonances which are due to the entanglement of the qubit and the detector. Different regimes are studied by employing a perturbative Floquet-Born-Markov approach for the qubit+detector system, as well as non-perturbative real-time path integral schemes for the driven spin-boson system. We find analytical results for the resonances, including the red and the blue sidebands. They agree well with those of exact ab-initio calculations.Comment: 4 pages, 4 figure

    Decays in Quantum Hierarchical Models

    Full text link
    We study the dynamics of a simple model for quantum decay, where a single state is coupled to a set of discrete states, the pseudo continuum, each coupled to a real continuum of states. We find that for constant matrix elements between the single state and the pseudo continuum the decay occurs via one state in a certain region of the parameters, involving the Dicke and quantum Zeno effects. When the matrix elements are random several cases are identified. For a pseudo continuum with small bandwidth there are weakly damped oscillations in the probability to be in the initial single state. For intermediate bandwidth one finds mesoscopic fluctuations in the probability with amplitude inversely proportional to the square root of the volume of the pseudo continuum space. They last for a long time compared to the non-random case

    Space Station Human Factors Research Review. Volume 1: EVA Research and Development

    Get PDF
    An overview is presented of extravehicular activity (EVA) research and development activities at Ames. The majority of the program was devoted to presentations by the three contractors working in parallel on the EVA System Phase A Study, focusing on Implications for Man-Systems Design. Overhead visuals are included for a mission results summary, space station EVA requirements and interface accommodations summary, human productivity study cross-task coordination, and advanced EVAS Phase A study implications for man-systems design. Articles are also included on subsea approach to work systems development and advanced EVA system design requirements

    Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere

    Get PDF
    The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced

    Equivalence of two mathematical forms for the bound angular momentum of the electromagnetic field

    Full text link
    It is shown that the mathematical form, obtained in a recent paper, for the angular momentum of the electromagnetic field in the vicinity of electric charge is equivalent to another form obtained previously by Cohen-Tannoudji, Dupont-Roc and Gilbert. In this version of the paper an improved derivation is given.Comment: 4 pages pdf, simpler derivatio

    On the entanglement of a quantum field with a dispersive medium

    Full text link
    In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.Comment: Final published PRL versio

    Standardized Pearson type 3 density function area tables

    Get PDF
    Tables constituting extension of similar tables published in 1936 are presented in report form. Single and triple parameter gamma functions are discussed. Report tables should interest persons concerned with development and use of numerical analysis and evaluation methods

    Civic Engagement and Service Learning Partnerships

    Full text link
    Service learning is designed to promote volunteerism and civic awareness. Community engagement in higher education specifically involves university members partnering with local community organizations to address a need. Students engage with community partners through service learning and other activities (Moore & Mendez, 2014). Service learning is a practice that connects new knowledge and social responsibility through active learning (Benson & Younkin, 1996).https://digitalscholarship.unlv.edu/btp_expo/1083/thumbnail.jp
    • …
    corecore