56 research outputs found

    Simulations of extensional flow in microrheometric devices

    Get PDF
    We present a detailed numerical study of the flow of a Newtonian fluid through microrheometric devices featuring a sudden contraction–expansion. This flow configuration is typically used to generate extensional deformations and high strain rates. The excess pressure drop resulting from the converging and diverging flow is an important dynamic measure to quantify if the device is intended to be used as a microfluidic extensional rheometer. To explore this idea, we examine the effect of the contraction length, aspect ratio and Reynolds number on the flow kinematics and resulting pressure field. Analysis of the computed velocity and pressure fields show that, for typical experimental conditions used in microfluidic devices, the steady flow is highly three-dimensional with open spiraling vortical structures in the stagnant corner regions. The numerical simulations of the local kinematics and global pressure drop are in good agreement with experimental results. The device aspect ratio is shown to have a strong impact on the flow and consequently on the excess pressure drop, which is quantified in terms of the dimensionless Couette and Bagley correction factors. We suggest an approach for calculating the Bagley correction which may be especially appropriate for planar microchannels

    In-process rheometry as a PAT tool for hot melt extrusion

    Get PDF
    YesReal time measurement of melt rheology has been investigated as a Process Analytical Technology (PAT) to monitor hot melt extrusion of an Active Pharmaceutical Ingredient (API) in a polymer matrix. A developmental API was melt mixed with a commercial copolymer using a heated twin screw extruder at different API loadings and set temperatures. The extruder was equipped with an instrumented rheological slit die which incorporated three pressure transducers flush mounted to the die surface. Pressure drop measurements within the die at a range of extrusion throughputs were used to calculate rheological parameters such as shear viscosity and exit pressure, related to shear and elastic melt flow properties respectively. Results showed that the melt exhibited shear thinning behavior whereby viscosity decreased with increasing flow rate. Increase in drug loading and set extrusion temperature resulted in a reduction in melt viscosity. Shear viscosity and exit pressure measurements were found to be sensitive to API loading. These findings suggest that this technique could be used as a simple tool to measure material attributes in-line, to build better overall process understanding for hot melt extrusion

    Fibre Distribution and the Process-Property Dilemma

    Get PDF
    The options for the fibre reinforcement of polymer matrix composites cover a range from short-fibre chopped strand mat, through woven fabric to unidirectional pre-impregnated (prepreg) reinforcements. The modelling of such materials may be simplified by assumptions such as perfect regular packing of fibres and the total absence of fibre waviness. However, these and other features such as the crimp or waviness in woven fabrics make real materials more complex than the simplified models. Clustering of fibres creates fibre-rich and resin-rich volumes (FRV and RRV respectively) in the composites. Prior to impregnation, large RRV will be pore-space that can expedite the flow of resin in liquid composite moulding processes (especially resin transfer moulding (RTM) and resin infusion under flexible tooling (RIFT). In the composite, the clustering of fibres tends to reduce the mechanical properties. The use of image processing and analysis can permit micro-/meso-structural characterisation which may correlate to the respective properties. This chapter considers the quantification of microstructure images in the context of the process-property dilemma for woven carbon-fibre reinforced composites with the aim of increasing understanding of the balance between processability and mechanical performance

    The Rheology of Injection Moulding

    No full text

    A Migrating-Home Protocol for Implementing Scope Consistency Model on a Cluster of Workstations

    Get PDF
    This paper is concerned with investigating the difference in response between a three-ply elastic plate of infinite lateral extent and a similar plate in which the core elastic layer is replaced by a layer of viscoelastic damping material. The transient response of the plate to an impulsive loading is governed by the dispersion equations for infinite trains of harmonic waves propagating under traction free conditions on the plate surfaces (see e.g. Achenbach [1]). These dispersion equations express the wavelength and the damping factor as functions of the frequency and they possess an infinite set of roots, corresponding to different modes of wave motion. In addition to their relevance to the impulsive loading problem, the dispersion curves of the various modes, have a significance for the experimental determination of the properties of laminates by ultrasonic techniques (see e.g. Mal and Bar Cohen [2])

    High-temperature and fire resistant polymers

    No full text
    corecore