30 research outputs found

    rab7b controls trafficking from endosomes to the tgn

    Get PDF
    Rab7b is a recently identified member of the Rab GTPase protein family and has high similarity to Rab7. It has been reported that Rab7b is lysosome associated, that it is involved in monocytic differentiation and that it promotes lysosomal degradation of TLR4 and TLR9. Here we investigated further the localization and function of this GTPase. We found that wild-type Rab7b is lysosome associated whereas an activated, GTP-bound form of Rab7b localizes to the Golgi apparatus. In contrast to Rab7, Rab7b is not involved in EGF and EGFR degradation. Depletion of Rab7b or expression of Rab7b T22N, a Rab7b dominant-negative mutant, impairs cathepsin-D maturation and causes increased secretion of hexosaminidase. Moreover, expression of Rab7b T22N or depletion of Rab7b alters TGN46 distribution, cation-independent mannose-6-phosphate receptor (CI-MPR) trafficking, and causes an increase in the levels of the late endosomal markers CI-MPR and cathepsin D. Vesicular stomatitis virus G protein (VSV-G) trafficking, by contrast, is normal in Rab7b-depleted or Rab7b-T22N-expressing cells. In addition, depletion of Rab7b prevents cholera toxin B-subunit from reaching the Golgi. Altogether, these data indicate that Rab7b is required for normal lysosome function, and, in particular, that it is an essential factor for retrograde transport from endosomes to the trans-Golgi network (TGN)

    RILP regulates vacuolar ATPase through interaction with the V1G1 subunit

    Get PDF
    Rab-interacting lysosomal protein (RILP) is a downstream effector of the Rab7 GTPase. GTP-bound Rab7 recruits RILP to endosomal membranes and, together, they control late endocytic traffic, phagosome and autophagosome maturation and are responsible for signaling receptor degradation. We have identified, using different approaches, the V1G1 (officially known as ATP6V1G1) subunit of the vacuolar ATPase (V-ATPase) as a RILP-interacting protein. V1G1 is a component of the peripheral stalk and is fundamental for correct V-ATPase assembly. We show here that RILP regulates the recruitment of V1G1 to late endosomal and lysosomal membranes but also controls V1G1 stability. Indeed, we demonstrate that V1G1 can be ubiquitylated and that RILP is responsible for proteasomal degradation of V1G1. Furthermore, we demonstrate that alterations in V1G1 expression levels impair V-ATPase activity. Thus, our data demonstrate for the first time that RILP regulates the activity of the V-ATPase through its interaction with V1G1. Given the importance of V-ATPase in several cellular processes and human diseases, these data suggest that modulation of RILP activity could be used to control V-ATPase function

    RILP regulates vacuolar ATPase through interaction with the V1G1 subunit

    Get PDF
    Erratum for RILP regulates vacuolar ATPase through interaction with the V1G1 subunit. [J Cell Sci. 2014

    The Rab-interacting lysosomal protein (RILP) regulates vacuolar ATPase acting on the V1G1 subunit

    Get PDF
    RILP is a downstream effector of the Rab7 GTPase. GTP-bound Rab7 recruits RILP on endosomal membranes and, together, they control late endocytic traffic, phagosome and autophagosome maturation and are responsible for signaling receptor degradation. We have identified, using different approaches, the V1G1 subunit of the vacuolar ATPase (V-ATPase) as a RILP interacting protein. V1G1 is a component of the peripheral stalk and it is fundamental for correct V-ATPase assembly. We established that RILP regulates the recruitment of V1G1 subunit to late endosomal/lysosomal membranes but also controls V1G1 stability. Indeed, we demonstrated that V1G1 is ubiquitinated and that RILP is responsible for proteasomal degradation of V1G1. Furthermore, we demonstrated that alterations of V1G1 expression levels impair V-ATPase activity. Thus, our data demonstrate for the first time that RILP regulates the activity of the V-ATPase through the interaction with V1G1. Given the importance of V-ATPase in several cellular processes and human diseases, these data suggest that modulation of RILP activity could be used to control V-ATPase function

    Rab7 and the CMT2b disease

    No full text
    The CMT2B (Charcot-Marie-Tooth type 2B) disease is an autosomal dominant axonal neuropathy. Sensory loss, distal muscle weakness and wasting, frequent foot ulcers and amputations of the toes due to frequent infections characterize this neuropathy. Four missense mutations in the rab7 gene have been identified as causative of the disease. Rab7 is a small G-protein of the Rab family that controls vesicular transport to late endosomes and lysosomes in the endocytic pathway. The CMT2B-associated mutant Rab7 proteins show altered nucleotide dissociation rates and impaired GTPase activity. In addition, these mutant proteins are predominantly in the GTP-bound form when expressed in human cells and they are able to rescue Rab7 function in Rab7-depleted cells. Thus these mutations generate activated forms of Rab7 that are responsible for the development of the disease. In spite of these results, there are still important gaps in our understanding of the mechanism underlying CMT2B. Indeed, how these mutations in the rab7 gene affect specifically peripheral neurons leading to an axonal pathology in CMT2B is not clear, and it is a particularly puzzling and challenging issue in view of the fact that Rab7 is a ubiquitous protein. The present review discusses possible molecular mechanisms underlying CMT2B

    Vimentin phosphorylation and assembly are regulated by the small GTPase Rab7a

    No full text
    Intermediate filaments are cytoskeletal elements important for cell architecture. Recently it has been discovered that intermediate filaments are highly dynamic and that they are fundamental for organelle positioning, transport and function thus being an important regulatory component of membrane traffic. We have identified, using the yeast two-hybrid system, vimentin, a class III intermediate filament protein, as a Rab7a interacting protein. Rab7a is a member of the Rab family of small GTPases and it controls vesicular membrane traffic to late endosomes and lysosomes. In addition, Rab7a is important for maturation of phagosomes and autophagic vacuoles. We confirmed the interaction in HeLa cells by co-immunoprecipitation and pull-down experiments, and established that the interaction is direct using bacterially expressed recombinant proteins. Immunofluorescence analysis on HeLa cells indicate that Rab7a-positive vesicles sometimes overlap with vimentin filaments. Overexpression of Rab7a causes an increase in vimentin phosphorylation at different sites and causes redistribution of vimentin in the soluble fraction. Consistently, Rab7a silencing causes an increase of vimentin present in the insoluble fraction (assembled). Also, expression of Charcot-Marie-Tooth 2B-causing Rab7a mutant proteins induces vimentin phosphorylation and increases the amount of vimentin in the soluble fraction. Thus, modulation of expression levels of Rab7a wt or expression of Rab7a mutant proteins changes the assembly of vimentin and its phosphorylation state indicating that Rab7a is important for the regulation of vimentin function

    CMT2B-associated Rab7 mutants inhibit neurite outgrowth

    No full text
    Charcot-Marie-Tooth type 2B (CMT2B) neuropathy is a rare autosomal-dominant axonal disorder characterized by distal weakness, muscle atrophy, and prominent sensory loss often complicated by foot ulcerations. CMT2B is associated with mutations of the Rab7 protein, a small GTPase controlling late endocytic traffic. Currently, it is still unknown how these mutations cause the neuropathy. Indeed, CMT2B selectively affects neuronal processes, despite the ubiquitous expression of Rab7. Therefore, this study focused on whether these disorder-associated mutations exert an effect on neurite outgrowth. We observed a marked inhibition of neurite outgrowth upon expression of all the CMT2B-associated mutants in the PC12 and Neuro2A cell lines. Thus, our data strongly support previous genetic data which proposed that these Rab7 mutations are indeed causally related to CMT2B. Inhibition of neurite outgrowth by these CMT2B-associated Rab7 mutants was confirmed biochemically by impaired up-regulation of growth-associated protein 43 (GAP43) in PC12 cells and of the nuclear neuronal differentiation marker NeuN in Neuro2A cells. Expression of a constitutively active Rab7 mutant had a similar effect to the expression of the CMT2B-associated Rab7 mutants. The active behavior of these CMT2B-associated mutants is in line with their previously demonstrated increased GTP loading, thus confirming that active Rab7 mutants are responsible for CMT2B. Our findings provide an explanation for the ability of CMT2B-associated Rab7 mutants to override the activity of wild-type Rab7 in heterozygous patients. Thus, our data suggest that lowering the activity of Rab7 in neurons could be a targeted therapy for CMT2B
    corecore