46 research outputs found

    Channelling of hydrothermal fluids during the accretion and evolution of the upper oceanic crust: Sr isotope evidence from ODP Hole 1256D

    Get PDF
    ODP Hole 1256D in the eastern equatorial Pacific is the first penetration of a complete section of fast spread ocean crust down to the dike-gabbro transition, and only the second borehole to sample in situ sheeted dikes after DSDP Hole 504B. Here a high spatial resolution record of whole rock and mineral strontium isotopic compositions from Site 1256 is combined with core observations and downhole wireline geophysical measurements to determine the extent of basalt-hydrothermal fluid reaction and to identify fluid pathways at different levels in the upper ocean crust.The volcanic sequence at Site 1256 is dominated by sheet and massive lava flows but the Sr isotope profile shows only limited exchange with seawater. However, the upper margins of two anomalously thick (>25 m) massive flow sequences are strongly hydrothermally altered with elevated Sr isotope ratios and appear to be conduits of lateral low-temperature off-axis fluid flow. Elsewhere in the lavas, high 87Sr/86Sr are restricted to breccia horizons. Mineralised hyaloclastic breccias in the Lava-Dike Transition are strongly altered to Mg-saponite, silica and pyrite, indicating alteration by mixed seawater and cooled hydrothermal fluids. In the Sheeted Dike Complex 87Sr/86Sr ratios are pervasively shifted towards hydrothermal fluid values (~0.705). Dike chilled margins display secondary mineral assemblages formed during both axial recharge and discharge and have higher 87Sr/86Sr than dike cores, indicating preferential fluid flow along dike margins. Localised increases in 87Sr/86Sr in the Dike-Gabbro Transition indicates the channelling of fluids along the sub-horizontal intrusive boundaries of the 25 to 50 m-thick gabbroic intrusions, with only minor increases in 87Sr/86Sr within the cores of the gabbro bodies.When compared to the pillow lava-dominated section from Hole 504B, the Sr isotope measurements from Site 1256 suggest that the extent of hydrothermal circulation in the upper ocean crust may be strongly dependent on the eruption style. Sheet and massive flow dominated lava sequences typical of fast spreading ridges may experience relatively restricted circulation, but there may be much more widespread circulation through pillow lava-dominated sections. In addition, the Hole 1256D sheeted dikes display a much greater extent of Sr-isotopic exchange compared to dikes from Hole 504B. Because seawater-derived hydrothermal fluids must transit the dikes during their evolution to black smoker-type fluids, the different Sr-isotope profiles for Holes 504B and 1256D suggest there are significant variations in mid-ocean ridge hydrothermal systems at fast and intermediate spreading ridges, which may impact geochemical cycles of elements mobilised by fluid-rock exchange at different temperatures

    Leveraging Spatial Metadata in Machine Learning for Improved Objective Quantification of Geological Drill Core

    Get PDF
    Here we present a method for using the spatial x–y coordinate of an image cropped from the cylindrical surface of digital 3D drill core images and demonstrate how this spatial metadata can be used to improve unsupervised machine learning performance. This approach is applicable to any data set with known spatial context, however, here it is used to classify 400 m of drillcore imagery into 12 distinct classes reflecting the dominant rock types and alteration features in the core. We modified two unsupervised learning models to incorporate spatial metadata and an average improvement of 25% was achieved over equivalent models that did not utilize metadata. Our semi-supervised workflow involves unsupervised network training followed by semi-supervised clustering where a support vector machine uses a subset of M expert labeled images to assign a pseudolabel to the entire data set. Fine-tuning of the best performing model showed an f1 (macro average) of 90%, and its classifications were used to estimate bulk fresh and altered rock abundance downhole. Validation against the same information gathered manually by experts when the core was recovered during the Oman Drilling Project revealed that our automatically generated data sets have a significant positive correlation (Pearson's r of 0.65–0.72) to the expert generated equivalent, demonstrating that valuable geological information can be generated automatically for 400 m of core with only ∌24 hr of domain expert effort

    Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate

    Get PDF
    The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago)1, was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period2–4. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500–3,000 parts per million5–7, and in the absence of tighter constraints carbon–climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments8–11 to generate a new high-fidelity record of CO2 concentrations using the boron isotope (ή11Β) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates6. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene12. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period13, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene14. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed2–4, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius15), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period

    Housing: An Under-Explored Influence on Children’s Well-Being and Becoming

    Get PDF
    Research on housing has tended to focus on adult outcomes, establishing relationships between housing and a number of aspects of health and well-being. Research exploring the influence of housing on children has been more limited, and has tended to focus on adult concerns around risk behaviours, behavioural problems and educational attainment. While these outcomes are important, they neglect the impact of housing on children’s lives beyond these concerns. There are a number of reasons to believe that housing would play an important role in children’s well-being more broadly. Family stress and strain models highlight how housing difficulties experienced by adults may have knock on effects for children, while Bronfenbrenner’s ecological approach to human development emphasises the importance of children’s experiences of their environments, of which the home is among the most important. This paper summaries the existing evidence around housing and child outcomes, predominantly educational and behavioural outcomes, and argues for the extension of this work to consider the impact of housing on children’s lives more broadly, especially their subjective well-being
    corecore