5,062 research outputs found

    Temporal and spatial distribution of stratospheric trace gases over Antarctica in August and September, 1987

    Get PDF
    There have been a large number of suggestions made concerning the origin of the Antarctic 'ozone hole' since its discovery; these changes include stratospheric chemistry, or changes in the solar input, or combinations of these effects. Supporting or refuting these theories requires a wide variety of data for comparison with the predictions. In Aug. and Sept., 1987, a field observation expedition was made over Antarctica from a base in Punta Arenas, Chile. Two aircraft, an ER-2 with in-situ instruments flew at altitudes up to 18 km measuring ozone, water, ClO, BrO, NO sub x, particles, and meteorological parameters in the ozone layer. A DC-8 flew at altitudes of 10 to 12 km, below the ozone layer, using remote sensing instruments for measuring composition and aerosol content of the ozone layer, as well as in-situ instruments for measuring composition at aircraft altitudes. The obsevation of a number of chemical species and their correlation with each other and with meteorological parameters gives a useful set of data for comparison with various theories

    Infrared measurements of column amounts of stratospheric constituents in the Antarctic winter, 1987

    Get PDF
    The discovery of Farman et al. of recent large depletions of ozone in the Antarctic stratosphere in the austral spring has aroused great interest because of its serious potential consequences, as well as its surprising nature. An airborne expedition, including 21 experiments on two aircraft, was mounted for Punta Arenas, Chile, in August and September, 1987, to gather a wide range of data to understand the origins and implications of this phenomenon, known as the ozone hole. As a part of this expedition, a high resolution Fourier transform spectrometer was flown on the DC-8, measuring the column amount of a number of trace gases above the flight altitude. Column results are presented only from the flight of September 21; results from other flights are included in an accompanying paper. The deduced column for ozone HCl, and NO2 deduced from the spectra, plotted as a function of latitude are shown. It should be noted that there are many other factors varying as well as the latitude, but latitude seems to be the variable which most clearly provides a passage across the vortex boundary. It can be seen that south 76 degrees S., the column of ozone, HCl, and NO2, all decreas markedly, The ratio of HCl to Hf, normally about 5:1 in midlatitudes, approaches unity. Clearly the chemistry of chlorine and nitrogen are disturbed in the region of low ozone. While dynamical theories could perhaps explain a reduction of these three gases in the same region, since all are of stratospheric origin, it is difficult to see how any purely dynamical mechanism could produce the observed HCl:HF ratio, since the two gases have similar origins. A close look at other species to be reported as well as the correlation with other measurements, such as ClO supports the conclusion that the ozone depletion is a result of chemical processes which deplete HCl and NOx relative to the midlatitude situation

    Field dependence of the temperature at the peak of the ZFC magnetization

    Full text link
    The effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization, MZFCM_{ZFC}, is studied using the recently obtained analytic results of Coffey et al. (Phys. Rev. Lett. {\bf 80}(1998) 5655) for the prefactor of the N\'{e}el relaxation time which allow one to precisely calculate the prefactor in the N\'{e}el-Brown model and thus the blocking temperature as a function of the coefficients of the Taylor series expansion of the magnetocrystalline anisotropy. The present calculations indicate that even a precise determination of the prefactor in the N\'{e}el-Brown theory, which always predicts a monotonic decrease of the relaxation time with increasing field, is insufficient to explain the effect of an applied magnetic field on the temperature at the maximum of the ZFC magnetization. On the other hand, we find that the non linear field-dependence of the magnetization along with the magnetocrystalline anisotropy appears to be of crucial importance to the existence of this maximum.Comment: 14 LaTex209 pages, 6 EPS figures. To appear in J. Phys.: Condensed Matte

    Thermally activated escape rates of uniaxial spin systems with transverse field

    Full text link
    Classical escape rates of uniaxial spin systems are characterized by a prefactor differing from and much smaller than that of the particle problem, since the maximum of the spin energy is attained everywhere on the line of constant latitude: theta=const, 0 =< phi =< 2*pi. If a transverse field is applied, a saddle point of the energy is formed, and high, moderate, and low damping regimes (similar to those for particles) appear. Here we present the first analytical and numerical study of crossovers between the uniaxial and other regimes for spin systems. It is shown that there is one HD-Uniaxial crossover, whereas at low damping the uniaxial and LD regimes are separated by two crossovers.Comment: 4 PR pages, 3 figures, final published versio

    The complexity of information set decoding

    Get PDF
    Information set decoding is an algorithm for decoding any linear code. Expressions for the complexity of the procedure that are logarithmically exact for virtually all codes are presented. The expressions cover the cases of complete minimum distance decoding and bounded hard-decision decoding, as well as the important case of bounded soft-decision decoding. It is demonstrated that these results are vastly better than those for the trivial algorithms of searching through all codewords or through all syndromes, and are significantly better than those for any other general algorithm currently known. For codes over large symbol fields, the procedure tends towards a complexity that is subexponential in the symbol size

    Developing a scale : adolescents' health choices related rights, duties and responsibilities

    Get PDF
    Background: Adolescents´ health choices have been widely researched, but the ethical basis of these choices, namely their rights, duties and responsibilities, have been disregarded and scale is required to measure these. Objective: To describe the development of a scale that measures adolescents´ rights, duties and responsibilities in relation to health choices and document the preliminary scale testing. Research design: A multi-phase development method was used to construct the Health Rights Duties and Responsibilities (HealthRDR) scale. The concepts and content were defined through document analysis, a systematic literature review and focus groups. The content validity and clarity of the items were evaluated by expert panel of 23 adolescents, school nurses and researchers. We then calculated the content validity index and the content validity ratio at on item and scale levels. Preliminary testing was conducted with 200 adolescents aged 15-16 years. Descriptive statistics, Cronbach´s alpha correlation and statistics for the item-analysis were calculated. Ethical considerations: Ethical approval and permission were obtained according to national legislation and responsible research practice was followed. Informed consent was obtained from the participants and the parents were informed about the study. Findings: The HealthRDR scale comprises of four sub-scales with 148 items: 15 on health choices, 36 on rights, 47 on duties and 50 on responsibilities. The items had a 0.93 content validity index and a 0.85 content validity ratio. The Cronbach alpha correlation coefficient was 0.99 for the total scale and the individual sub-scales scores were: health choices (0.93), rights (0.97), responsibilities (0.99) and duties (0.98). Discussion: The findings are discussed in light of the ethical concepts and validity and reliability of the developed scale. Conclusion: The HealthRDR scale defines and understands adolescents´ rights, duties and responsibilities in relation to health choices and has good content validity. Further testing and refinement of the concepts are needed

    Monte Carlo simulation with time step quantification in terms of Langevin dynamics

    Full text link
    For the description of thermally activated dynamics in systems of classical magnetic moments numerical methods are desirable. We consider a simple model for isolated magnetic particles in a uniform field with an oblique angle to the easy axis of the particles. For this model, a comparison of the Monte Carlo method with Langevin dynamics yields new insight in the interpretation of the Monte Carlo process, leading to the implementation of a new algorithm where the Monte Carlo step is time-quantified. The numeric results for the characteristic time of the magnetisation reversal are in excellent agreement with asymptotic solutions which itself are in agreement with the exact numerical results obtained from the Fokker-Planck equation for the Neel-Brown model.Comment: 5 pages, Revtex, 4 Figures include

    Transient rectification of Brownian diffusion with asymmetric initial distribution

    Full text link
    In an ensemble of non-interacting Brownian particles, a finite systematic average velocity may temporarily develop, even if it is zero initially. The effect originates from a small nonlinear correction to the dissipative force, causing the equation for the first moment of velocity to couple to moments of higher order. The effect may be relevant when a complex system dissociates in a viscous medium with conservation of momentum

    Role of interactions in ferrofluid thermal ratchets

    Full text link
    Orientational fluctuations of colloidal particles with magnetic moments may be rectified with the help of external magnetic fields with suitably chosen time dependence. As a result a noise-driven rotation of particles occurs giving rise to a macroscopic torque per volume of the carrier liquid. We investigate the influence of mutual interactions between the particles on this ratchet effect by studying a model system with mean-field interactions. The stochastic dynamics may be described by a nonlinear Fokker-Planck equation for the collective orientation of the particles which we solve approximately by using the effective field method. We determine an interval for the ratio between coupling strength and noise intensity for which a self-sustained rectification of fluctuations becomes possible. The ratchet effect then operates under conditions for which it were impossible in the absence of interactions.Comment: 18 pages, 10 figure
    corecore