106 research outputs found
Repositioning Microtubule Stabilizing Drugs for Brain Disorders
Microtubule stabilizing agents are among the most clinically useful chemotherapeutic drugs. Mostly, they act to stabilize microtubules and inhibit cell division. While not without side effects, new generations of these compounds display improved pharmacokinetic properties and brain penetrance. Neurological disorders are intrinsically associated with microtubule defects, and efforts to reposition microtubule-targeting chemotherapeutic agents for treatment of neurodegenerative and psychiatric illnesses are underway. Here we catalog microtubule regulators that are associated with Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, schizophrenia and mood disorders. We outline the classes of microtubule stabilizing agents used for cancer treatment, their brain penetrance properties and neuropathy side effects, and describe efforts to apply these agents for treatment of brain disorders. Finally, we summarize the current state of clinical trials for microtubule stabilizing agents under evaluation for central nervous system disorders
JNK Regulation of Depression and Anxiety
Depression
and anxiety are the most common mood disorders affecting 300 million
sufferers worldwide. Maladaptive changes in the neuroendocrine stress
response is cited as the most common underlying cause, though how the
circuits underlying this response are controlled at the molecular level,
remains largely unknown. Approximately 40% of patients do not respond
to current treatments, indicating that untapped mechanisms exist. Here
we review recent evidence implicating JNK in the control of anxiety and
depressive-like behavior with a particular focus on its action in
immature granule cells of the hippocampal neurogenic niche and the
potential for therapeutic targeting for affective disorders.Anxiety and depression are among the largest causes of disability worldwide [1].
They have complex and varied etiologies with genetic, epigenetic and
environmental factors contributing to disease susceptibility.
Maladaptative changes in normal stress responses leading to long lasting
physical changes at the level of synapses and circuits are believed to
be among the underlying causes. Antidepressant drugs have targeted the
same core mechanisms for several decades, yet treatment-resistant
depression is still a major problem, indicating the need for a paradigm
shift [2].
Many theories of depression have been proposed, including dysregulation
of monoaminergic neurotransmission, neurotrophic factors and
hippocampal neurogenesis [3, 4].
However, the signalling molecules that govern mood and its underlying
circuitry are largely unknown and identifying these will be essential
for a comprehensive understanding of mood disorders and development of
new treatments.</p
Impact of JNK and Its Substrates on Dendritic Spine Morphology
The protein kinase JNK1 exhibits high activity in the developing brain, where it regulates dendrite morphology through the phosphorylation of cytoskeletal regulatory proteins. JNK1 also phosphorylates dendritic spine proteins, and Jnk1-/- mice display a long-term depression deficit. Whether JNK1 or other JNKs regulate spine morphology is thus of interest. Here, we characterize dendritic spine morphology in hippocampus of mice lacking Jnk1-/- using Lucifer yellow labelling. We find that mushroom spines decrease and thin spines increase in apical dendrites of CA3 pyramidal neurons with no spine changes in basal dendrites or in CA1. Consistent with this spine deficit, Jnk1-/- mice display impaired acquisition learning in the Morris water maze. In hippocampal cultures, we show that cytosolic but not nuclear JNK, regulates spine morphology and expression of phosphomimicry variants of JNK substrates doublecortin (DCX) or myristoylated alanine-rich C kinase substrate-like protein-1 (MARCKSL1), rescue mushroom, thin, and stubby spines differentially. These data suggest that physiologically active JNK controls the equilibrium between mushroom, thin, and stubby spines via phosphorylation of distinct substrates
Linking Community Service, Learning, and Enviromental Analytical Chemistry
In 1994, during a tour of the then-new natural sciences building- a $43 million teaching and research complex fully equipped with the latest in technology and instrumentation for chemistry and geology courses-a member of the Buffalo Public Schools Board of Education asked, How can the community [that paid for it] have access to this teaching and research equipment? That question triggered the effort reported here - a program to better link teaching and research to community service
The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis
<p>Abstract</p> <p>Background</p> <p><it>Vibrio parahaemolyticus </it>is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to <it>V. parahaemolyticus</it>, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.</p> <p>Results</p> <p><it>V. parahaemolyticus </it>deployed its TTSS1 to induce activation of the JNK, p38 and ERK MAPK in human epithelial cells. VP1680 was identified as the TTSS1 effector protein responsible for MAPK activation in Caco-2 cells and the activation of JNK and ERK by this protein was important in induction of host cell death. <it>V. parahaemolyticus </it>actively induced IL-8 secretion in a response mediated by TTSS1. A role for VP1680 and for the ERK signalling pathway in the stimulation of IL-8 production in epithelial cells by <it>V. parahaemolyticus </it>was established. Interestingly, TTSS2 inhibited IL-8 mRNA transcription at early stages of interaction between the bacterium and the cell.</p> <p>Conclusions</p> <p>This study demonstrated that <it>V. parahaemolyticus </it>activates the three major MAPK signalling pathways in intestinal epithelial cells in a TTSS1-dependent manner that involves the TTSS1 effector VP1680. Furthermore VP1680 and JNK and ERK activation were needed for maximal cytotoxicity of the bacterium. It was shown that <it>V. parahaemolyticus </it>is a strong inducer of IL-8 secretion and that induction reflects a balance between the effects of TTSS1 and TTSS2. Increases in IL-8 secretion were mediated by TTSS1 and VP1680, and augmented by ERK activation. These results shed light on the mechanisms of bacterial pathogenesis mediated by TTSS and suggest significant roles for MAPK signalling during infection with <it>V. parahaemolyticus</it>.</p
Activating transcription factor 3 is a positive regulator of human IFNG gene expression
IL-12 and IL-18 are essential for Th1 differentiation, whereas the role of IFN-α in Th1 development is less understood. In this microarray-based study, we searched for genes that are regulated by IFN-α, IL-12, or the combination of IL-12 plus IL-18 during the early differentiation of human umbilical cord blood CD4+ Th cells. Twenty-six genes were similarly regulated in response to treatment with IL-12, IFN-α, or the combination of IL-12 plus IL-18. These genes could therefore play a role in Th1 lineage decision. Transcription factor activating transcription factor (ATF) 3 was upregulated by these cytokines and selected for further study. Ectopic expression of ATF3 in CD4+ T cells enhanced the production of IFN-α, the hallmark cytokine of Th1 cells, whereas small interfering RNA knockdown of ATF3 reduced IFN-γ production. Furthermore, ATF3 formed an endogenous complex with JUN in CD4+ T cells induced to Th1. Chromatin immunoprecipitation and luciferase reporter assays showed that both ATF3 and JUN are recruited to and transactivate the IFNG promoter during early Th1 differentiation. Collectively, these data indicate that ATF3 promotes human Th1 differentiation
PhosPiR: an automated phosphoproteomic pipeline in R
Large-scale phosphoproteome profiling using mass spectrometry (MS) provides functional insight that is crucial for disease biology and drug discovery. However, extracting biological understanding from these data is an arduous task requiring multiple analysis platforms that are not adapted for automated high-dimensional data analysis. Here, we introduce an integrated pipeline that combines several R packages to extract high-level biological understanding from large-scale phosphoproteomic data by seamless integration with existing databases and knowledge resources. In a single run, PhosPiR provides data clean-up, fast data overview, multiple statistical testing, differential expression analysis, phosphosite annotation and translation across species, multilevel enrichment analyses, proteome-wide kinase activity and substrate mapping and network hub analysis. Data output includes graphical formats such as heatmap, box-, volcano- and circos-plots. This resource is designed to assist proteome-wide data mining of pathophysiological mechanism without a need for programming knowledge.</p
Impact of JNK and Its Substrates on Dendritic Spine Morphology
The protein kinase JNK1 exhibits high activity in the developing brain, where it regulates dendrite morphology through the phosphorylation of cytoskeletal regulatory proteins. JNK1 also phosphorylates dendritic spine proteins, and Jnk1-/- mice display a long-term depression deficit. Whether JNK1 or other JNKs regulate spine morphology is thus of interest. Here, we characterize dendritic spine morphology in hippocampus of mice lacking Jnk1-/- using Lucifer yellow labelling. We find that mushroom spines decrease and thin spines increase in apical dendrites of CA3 pyramidal neurons with no spine changes in basal dendrites or in CA1. Consistent with this spine deficit, Jnk1-/- mice display impaired acquisition learning in the Morris water maze. In hippocampal cultures, we show that cytosolic but not nuclear JNK, regulates spine morphology and expression of phosphomimicry variants of JNK substrates doublecortin (DCX) or myristoylated alanine-rich C kinase substrate-like protein-1 (MARCKSL1), rescue mushroom, thin, and stubby spines differentially. These data suggest that physiologically active JNK controls the equilibrium between mushroom, thin, and stubby spines via phosphorylation of distinct substrates
JNK1 phosphorylation of SCG10 determines microtubule dynamics and axodendritic length
c-Jun NH2-terminal kinases (JNKs) are essential during brain development, when they regulate morphogenic changes involving cell movement and migration. In the adult, JNK determines neuronal cytoarchitecture. To help uncover the molecular effectors for JNKs in these events, we affinity purified JNK-interacting proteins from brain. This revealed that the stathmin family microtubule-destabilizing proteins SCG10, SCLIP, RB3, and RB3′ interact tightly with JNK. Furthermore, SCG10 is also phosphorylated by JNK in vivo on sites that regulate its microtubule depolymerizing activity, serines 62 and 73. SCG10-S73 phosphorylation is significantly decreased in JNK1−/− cortex, indicating that JNK1 phosphorylates SCG10 in developing forebrain. JNK phosphorylation of SCG10 determines axodendritic length in cerebrocortical cultures, and JNK site–phosphorylated SCG10 colocalizes with active JNK in embryonic brain regions undergoing neurite elongation and migration. We demonstrate that inhibition of cytoplasmic JNK and expression of SCG10-62A/73A both inhibited fluorescent tubulin recovery after photobleaching. These data suggest that JNK1 is responsible for regulation of SCG10 depolymerizing activity and neurite elongation during brain development
- …