140 research outputs found

    Thermodynamics of Nonstoichiometric Nickel Tellurides. I. Heat Capacity and Thermodynamic Functions of the δ Phase from 5 to 350°K

    Full text link
    Heat capacities of the nickel tellurides were measured at compositions NiTe1.1 and NiTe2.0 (near limits of homogeneity of the δ phase) and at one intermediate composition, NiTe1.5, from 5 to 350°K. Heat capacity values and entropy and enthalpy increments are tabulated. No evidence of order‐disorder transitions, or thermal anomalies, or of contributions to the thermal properties from the anisotropy or phonon scattering by the holes in the structure on approaching the composition NiTe2 was observed. Although simple additivity of the heat capacities of the constituent elements failed to represent that of the solution compositions adequately, a Kopp‐Neumann treatment in terms of the limiting compositions of the δ phase gives good agreement with the experimental heat capacity and entropy of NiTe1.5 and hence is useful in interpolating to other intermediate compositions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70090/2/JCPSA6-28-3-497-1.pd

    The observation of silicon nanocrystals in siloxene

    Get PDF
    This article discusses the observation of silicon nanocrystals in siloxene using high resolution transmission electron microscopy

    Ets1 Induces Dysplastic Changes When Expressed in Terminally-Differentiating Squamous Epidermal Cells

    Get PDF
    BACKGROUND: Ets1 is an oncogene that functions as a transcription factor and regulates the activity of many genes potentially important for tumor initiation and progression. Interestingly, the Ets1 oncogene is over-expressed in many human squamous cell cancers and over-expression is highly correlated with invasion and metastasis. Thus, Ets1 is believed to mainly play a role in later stages of the oncogenic process, but not early events. METHODOLOGY/PRINCIPAL FINDINGS: To better define the role of Ets1 in squamous cell carcinogenesis, we generated a transgenic mouse model in which expression of the Ets1 oncogene could be temporally and spatially regulated. Upon Ets1 induction in differentiating cells of stratified squamous epithelium, these mice exhibited dramatic changes in epithelial organization including increased proliferation and blocked terminal differentiation. The phenotype was completely reversed when Ets1 expression was suppressed. In mice where Ets1 expression was re-induced at a later age, the phenotype was more localized and the lesions that developed were more invasive. Many potential Ets1 targets were upregulated in the skin of these mice with the most dramatic being the metalloprotease MMP13, which we demonstrate to be a direct transcriptional target of Ets1. CONCLUSIONS/SIGNIFICANCE: Collectively, our data reveal that upregulation of Ets1 can be an early event that promotes pre-neoplastic changes in epidermal tissues via its regulation of key genes driving growth and invasion. Thus, the Ets1 oncogene may be important for oncogenic processes in both early and late stages of tumor development

    Caffeic Acid Phenethyl Ester Causes p21Cip1 Induction, Akt Signaling Reduction, and Growth Inhibition in PC-3 Human Prostate Cancer Cells

    Get PDF
    Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21Cip1. Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer
    corecore