15 research outputs found

    The impact of solar ultraviolet radiation on human health in sub-Saharan Africa

    Get PDF
    Photoprotection messages and ‘SunSmart’ programmes exist mainly to prevent skin cancers and, more recently, to encourage adequate personal sun exposure to elicit a vitamin D response for healthy bone and immune systems. Several developed countries maintain intensive research networks and monitor solar UV radiation to support awareness campaigns and intervention development. The situation is different in sub-Saharan Africa. Adequate empirical evidence of the impact of solar UV radiation on human health, even for melanomas and cataracts, is lacking, and is overshadowed by other factors such as communicable diseases, especially HIV, AIDS and tuberculosis. In addition, the established photoprotection messages used in developed countries have been adopted and implemented in a limited number of sub-Saharan countries but with minimal understanding of local conditions and behaviours. In this review, we consider the current evidence for sun-related effects on human health in sub-Saharan Africa, summarise published research and identify key issues. Data on the prevalence of human diseases affected by solar UV radiation in all subpopulations are not generally available, financial support is insufficient and the infrastructure to address these and other related topics is inadequate. Despite these limitations, considerable progress may be made regarding the management of solar UV radiation related health outcomes in sub-Saharan Africa, provided researchers collaborate and resources are allocated appropriately

    Solar UV radiation in Saint-Denis, La Réunion and Cape Town, South Africa: 10 years climatology and human exposure assessment at altitude

    Get PDF
    International audienceSolar ultraviolet radiation (UVR) monitoring is important since it depends on several atmospheric parameters which are associated with climate change and since excess solar UVR exposure and has significant impacts on human health and wellbeing. The objective of this study was to investigate the trends in solar UVR during a decade (2009-2018) in Saint-Denis, Reunion Island (20.9°S, 55.5°E, 85 m ASL) and Cape Town, South Africa (33.97°S, 18.6°E, 42 m ASL). This comparison was done using total daily erythema exposure as derived from UVR sensors continuously at both sites. Climatology over the 10-year period showed extreme UVR exposure for both sites. Slight changes with opposite trends were found, +3.6% at Saint-Denis and −3.7% at Cape Town. However, these two sites often experience extreme weather conditions thereby making the trend evaluation difficult. Human exposure assessment was performed for hiking activities at two popular high-altitude hiking trails on the Maïdo-Grand Bénare (Reunion) and Table Mountain (Cape Town) with a handheld radiometer. Extreme exposure doses of 64 SED and 40 SED (Standard Erythemal Dose, 1 SED = 100 J.m −2) were recorded, respectively. These high exposure doses highlight the importance of raising public awareness on the risk related to excess UVR exposure at tourist sites, especially those at high altitude

    Population density estimate of leopards (Panthera pardus) in north-western Mpumalanga, South Africa, determined using spatially explicit capture-recapture methods

    Get PDF
    AVAILABILITY OF DATA AND MATERIAL : Raw data and material are either published in the manuscript or available in data repository DANS (https://doi.org/10.17026/dans-zvs-betq).Please read abstract in the article.PhD student operating funds available from the School of Animal and Veterinary Sciences at The University of Adelaide.https://link.springer.com/journal/42991hj2023Production Animal Studie

    Solar ultraviolet radiation exposure and human health in South Africa: Finding a balance

    Get PDF
    In considering the likelihood of South Africa (SA) attaining the 2015 Millennium Development Goals, many health issues require urgent attention. The adverse effect of insufficient or excessive exposure to solar ultraviolet radiation (UVR) may exacerbate an already stressed public health service. These concerns become important when considering climate variability and patterns of behaviour

    Stratosphere–Troposphere Exchange and O3 Variability in the Lower Stratosphere and Upper Troposphere over the Irene SHADOZ Site, South Africa

    No full text
    This study aims to investigate the Stratosphere-Troposphere Exchange (STE) events and ozone changes over Irene (25.5° S, 28.1° E). Twelve years of ozonesondes data (2000–2007, 2012–2015) from Irene station operating in the framework of the Southern Hemisphere Additional Ozonesodes (SHADOZ) was used to study the troposphere (0–16 km) and stratosphere (17–28 km) ozone (O3) vertical profiles. Ozone profiles were grouped into three categories (2000–2003, 2004–2007 and 2012–2015) and average composites were calculated for each category. Fifteen O3 enhancement events were identified over the study period. These events were observed in all seasons (one event in summer, four events in autumn, five events in winter and five events in spring); however, they predominantly occur in winter and spring. The STE events presented here are observed to be influenced by the Southern Hemisphere polar vortex. To strengthen the investigation into STE events, advected potential vorticity maps were used, which were assimilated using Modélisation Isentrope du transport Méso–échelle de l’Ozone Stratosphérique par Advection (MIMOSA) model for the 350 K (~12–13 km) isentropic level. These maps indicated transport of high latitude air masses responsible for the reduction of the O3 mole fractions at the lower stratosphere over Irene which coincides with the enhancement of ozone in the upper troposphere. In general, the stratosphere is dominated by higher Modern Retrospective Analysis for Research Application (MERRA-2) potential vorticity (PV) values compared to the troposphere. However, during the STE events, higher PV values from the stratosphere were observed to intrude the troposphere. Ozone decline was observed from 12 km to 24 km with the highest decline occurring from 14 km to 18 km. An average decrease of 6.0% and 9.1% was calculated from 12 to 24 km in 2004–2007 and 2012–2015 respectively, when compared with 2000–2003 average composite. The observed decline occurred in the upper troposphere and lower stratosphere with winter and spring showing more decline compared with summer and autumn

    The impact of solar ultraviolet radiation on human health in sub-Saharan Africa

    Get PDF
    Photoprotection messages and ‘SunSmart’ programmes exist mainly to prevent skin cancers and, more recently, to encourage adequate personal sun exposure to elicit a vitamin D response for healthy bone and immune systems. Several developed countries maintain intensive research networks and monitor solar UV radiation to support awareness campaigns and intervention development. The situation is different in sub-Saharan Africa. Adequate empirical evidence of the impact of solar UV radiation on human health, even for melanomas and cataracts, is lacking, and is overshadowed by other factors such as communicable diseases, especially HIV, AIDS and tuberculosis. In addition, the established photoprotection messages used in developed countries have been adopted and implemented in a limited number of sub-Saharan countries but with minimal understanding of local conditions and behaviours. In this review, we consider the current evidence for sun-related effects on human health in sub-Saharan Africa, summarise published research and identify key issues. Data on the prevalence of human diseases affected by solar UV radiation in all subpopulations are not generally available, financial support is insufficient and the infrastructure to address these and other related topics is inadequate. Despite these limitations, considerable progress may be made regarding the management of solar UV radiation related health outcomes in sub-Saharan Africa, provided researchers collaborate and resources are allocated appropriately

    Ozone Variability and Trend Estimates from 20-Years of Ground-Based and Satellite Observations at Irene Station, South Africa

    Get PDF
    International audienceWhile the stratospheric ozone protects the biosphere against ultraviolet (UV) radiation, tropospheric ozone acts like a greenhouse gas and an indicator of anthropogenic pollution. In this paper, we combined ground-based and satellite ozone observations over Irene site (25.90 • S, 28.22 • E), one of the most ancient ozone-observing stations in the southern tropics. The dataset is made of daily total columns and weekly profiles of ozone collected over 20 years, from 1998 to 2017. In order to fill in some missing data and split the total column of ozone into a tropospheric and a stratospheric column, we used satellite observations from TOMS (Total Ozone Mapping Spectrometer), OMI (Ozone Monitoring Instrument), and MLS (Microwave Limb Sounder) experiments. The tropospheric column is derived by integrating ozone profiles from an ozonesonde experiment, while the stratospheric column is obtained by subtracting the tropospheric column from the total column (recorded by the Dobson spectrometer), and by assuming that the mesospheric contribution is negligible. Each of the obtained ozone time series was then analyzed by applying the method of wavelet transform, which permitted the determination of the main forcings that contribute to each ozone time series. We then applied the multivariate Trend-Run model and the Mann-Kendall test for trend analysis. Despite the different analytical approaches, the obtained results are broadly similar and consistent. They showed a decrease in the stratospheric column (−0.56% and −1.7% per decade, respectively, for Trend-Run and Mann-Kendall) and an increase in the tropospheric column (+2.37% and +3.6%, per decade, respectively, for Trend-Run and Mann-Kendall). Moreover, the results presented here indicated that the slowing down of the total ozone decline is somewhat due to the contribution of the tropospheric ozone concentration

    Sensitivity of Erythemally Effective UV Irradiance and Daily Exposure to Uncertainties in Measured Total Ozone

    No full text
    In this study the sensitivity of the erythemally effective radiation to uncertainties in operationally measured total ozone content of the atmosphere (TOC) was estimated. For this, daily operational TOC measurements from different instruments were applied covering the period from 1997 to 1999. Measurements were gained from space by Earth Probe Satellite, Earth Remote Sensing satellite ⁄ Global Ozone Monitoring Experiment and Operational Vertical Sounder and from the ground by Dobson and Brewer spectrophotometers for the locations of Hradec Kralove (Czech Republic), Nairobi (Kenya), Springbok (Republic of South Africa). The values were used as input parameter to model calculations of erythemally effective irradiance and daily radiant exposure. The differences due to the use of TOC from different sources were analyzed with respect to the Ultraviolet Index (UVI). The UVI was introduced as a tool for sun protection and health care. Therefore, it is of special importance to know the restriction of accuracy. As a tool of health care, the maximum uncertainties are of interest and are described in using the 95%-percentile and the maximum differences. This study shows that differences, i.e. uncertainties 95%-percentile) are in the order of 1 UVI. Independently on the location, however, extreme differences may overstep 3 UVI. For the daily dose the 95%-percentile is around 7.5 UVI hours (UVIh) but differences higher than 20 UVIh were also found

    Comparison of Ground-Based and Satellite-Derived Solar UV Index Levels at Six South African Sites

    Get PDF
    South Africa has been measuring the ground-based solar UV index for more than two decades at six sites to raise awareness about the impacts of the solar UV index on human health. This paper is an exploratory study based on comparison with satellite UV index measurements from the OMI/AURA experiment. Relative UV index differences between ground-based and satellite-derived data ranged from 0 to 45% depending on the site and year. Most of time, these differences appear in winter. Some ground-based stations’ data had closer agreement with satellite-derived data. While the ground-based instruments are not intended for long-term trend analysis, they provide UV index information for public awareness instead, with some weak signs suggesting such long-term trends may exist in the ground-based data. The annual cycle, altitude, and latitude effects clearly appear in the UV index data measured in South Africa. This variability must be taken into account for the development of an excess solar UV exposure prevention strategy
    corecore