64 research outputs found

    The Potorous CPD Photolyase Rescues a Cryptochrome-Deficient Mammalian Circadian Clock

    Get PDF
    Despite the sequence and structural conservation between cryptochromes and photolyases, members of the cryptochrome/photolyase (flavo)protein family, their functions are divergent. Whereas photolyases are DNA repair enzymes that use visible light to lesion-specifically remove UV-induced DNA damage, cryptochromes act as photoreceptors and circadian clock proteins. To address the functional diversity of cryptochromes and photolyases, we investigated the effect of ectopically expressed Arabidopsis thaliana (6-4)PP photolyase and Potorous tridactylus CPD-photolyase (close and distant relatives of mammalian cryptochromes, respectively), on the performance of the mammalian cryptochromes in the mammalian circadian clock. Using photolyase transgenic mice, we show that Potorous CPD-photolyase affects the clock by shortening the period of behavioral rhythms. Furthermore, constitutively expressed CPD-photolyase is shown to reduce the amplitude of circadian oscillations in cultured cells and to inhibit CLOCK/BMAL1 driven transcription by interacting with CLOCK. Importantly, we show that Potorous CPD-photolyase can restore the molecular oscillator in the liver of (clock-deficient) Cry1/Cry2 double knockout mice. These data demonstrate that a photolyase can act as a true cryptochrome. These findings shed new light on the importance of the core structure of mammalian cryptochromes in relation to its function in the circadian clock and contribute to our further understanding of the evolution of the cryptochrome/photolyase protein family

    Phylogeography of the Microcoleus vaginatus (Cyanobacteria) from Three Continents – A Spatial and Temporal Characterization

    Get PDF
    It has long been assumed that cyanobacteria have, as with other free-living microorganisms, a ubiquitous occurrence. Neither the geographical dispersal barriers nor allopatric speciation has been taken into account. We endeavoured to examine the spatial and temporal patterns of global distribution within populations of the cyanobacterium Microcoleus vaginatus, originated from three continents, and to evaluate the role of dispersal barriers in the evolution of free-living cyanobacteria. Complex phylogeographical approach was applied to assess the dispersal and evolutionary patterns in the cyanobacterium Microcoleus vaginatus (Oscillatoriales). We compared the 16S rRNA and 16S-23S ITS sequences of strains which had originated from three continents (North America, Europe, and Asia). The spatial distribution was investigated using a phylogenetic tree, network, as well as principal coordinate analysis (PCoA). A temporal characterization was inferred using molecular clocks, calibrated from fossil DNA. Data analysis revealed broad genetic diversity within M. vaginatus. Based on the phylogenetic tree, network, and PCoA analysis, the strains isolated in Europe were spatially separated from those which originated from Asia and North America. A chronogram showed a temporal limitation of dispersal barriers on the continental scale. Dispersal barriers and allopatric speciation had an important role in the evolution of M. vaginatus. However, these dispersal barriers did not have a permanent character; therefore, the genetic flow among populations on a continental scale was only temporarily present. Furthermore, M. vaginatus is a recently evolved species, which has been going through substantial evolutionary changes

    Evolutionary Origins and Functions of the Carotenoid Biosynthetic Pathway in Marine Diatoms

    Get PDF
    Carotenoids are produced by all photosynthetic organisms, where they play essential roles in light harvesting and photoprotection. The carotenoid biosynthetic pathway of diatoms is largely unstudied, but is of particular interest because these organisms have a very different evolutionary history with respect to the Plantae and are thought to be derived from an ancient secondary endosymbiosis between heterotrophic and autotrophic eukaryotes. Furthermore, diatoms have an additional xanthophyll-based cycle for dissipating excess light energy with respect to green algae and higher plants. To explore the origins and functions of the carotenoid pathway in diatoms we searched for genes encoding pathway components in the recently completed genome sequences of two marine diatoms. Consistent with the supplemental xanthophyll cycle in diatoms, we found more copies of the genes encoding violaxanthin de-epoxidase (VDE) and zeaxanthin epoxidase (ZEP) enzymes compared with other photosynthetic eukaryotes. However, the similarity of these enzymes with those of higher plants indicates that they had very probably diversified before the secondary endosymbiosis had occurred, implying that VDE and ZEP represent early eukaryotic innovations in the Plantae. Consequently, the diatom chromist lineage likely obtained all paralogues of ZEP and VDE genes during the process of secondary endosymbiosis by gene transfer from the nucleus of the algal endosymbiont to the host nucleus. Furthermore, the presence of a ZEP gene in Tetrahymena thermophila provides the first evidence for a secondary plastid gene encoded in a heterotrophic ciliate, providing support for the chromalveolate hypothesis. Protein domain structures and expression analyses in the pennate diatom Phaeodactylum tricornutum indicate diverse roles for the different ZEP and VDE isoforms and demonstrate that they are differentially regulated by light. These studies therefore reveal the ancient origins of several components of the carotenoid biosynthesis pathway in photosynthetic eukaryotes and provide information about how they have diversified and acquired new functions in the diatoms

    The relevance of desmids in the biological typology and evaluation of fresh waters

    No full text
    • …
    corecore