75 research outputs found

    Evolving temporal fuzzy association rules from quantitative data with a multi-objective evolutionary algorithm

    Get PDF
    A novel method for mining association rules that are both quantitative and temporal using a multi-objective evolutionary algorithm is presented. This method successfully identifies numerous temporal association rules that occur more frequently in areas of a dataset with specific quantitative values represented with fuzzy sets. The novelty of this research lies in exploring the composition of quantitative and temporal fuzzy association rules and the approach of using a hybridisation of a multi-objective evolutionary algorithm with fuzzy sets. Results show the ability of a multi-objective evolutionary algorithm (NSGA-II) to evolve multiple target itemsets that have been augmented into synthetic datasets

    Dual guidance in evolutionary multi-objective optimization by localization

    Get PDF
    In this paper, we propose a framework using local models for multi-objective optimization to guide the search heuristic in both the decision and objective spaces. The localization is built using a limited number of adaptive spheres in the decision space. These spheres are usually guided, using some direction information, in the decision space towards the areas with non-dominated solutions. We use a second mechanism to adjust the spheres to specialize on different parts of the Pareto front using the guided dominance technique in the objective space. With this dual guidance, we can easily guide spheres towards different parts of the Pareto front while also exploring the decision space efficiently

    On Test Functions for Evolutionary Multi-objective Optimization

    Get PDF
    In order to evaluate the relative performance of optimization algorithms benchmark problems are frequently used. In the case of multi-objective optimization (MOO), we will show in this paper that most known benchmark problems belong to a constrained class of functions with piecewise linear Pareto fronts in the parameter space. We present a straightforward way to define benchmark problems with an arbitrary Pareto front both in the fitness and parameter spaces. Furthermore, we introduce a difficulty measure based on the mapping of probability density functions from parameter to fitness space. Finally, we evaluate two MOO algorithms for new benchmark problems. © Springer-Verlag 2004

    Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary Algorithms

    Get PDF
    Proceeding of: 5th International Conference, EMO 2009, Nantes, France, April 7-10, 2009This work presents the application of a parallel coopera- tive optimization approach to the broadcast operation in mobile ad-hoc networks (manets). The optimization of the broadcast operation im- plies satisfying several objectives simultaneously, so a multi-objective approach has been designed. The optimization lies on searching the best configurations of the dfcn broadcast protocol for a given manet sce- nario. The cooperation of a team of multi-objective evolutionary al- gorithms has been performed with a novel optimization model. Such model is a hybrid parallel algorithm that combines a parallel island- based scheme with a hyperheuristic approach. Results achieved by the algorithms in different stages of the search process are analyzed in order to grant more computational resources to the most suitable algorithms. The obtained results for a manets scenario, representing a mall, demon- strate the validity of the new proposed approach.This work has been supported by the ec (feder) and the Spanish Ministry of Education and Science inside the ‘Plan Nacional de i+d+i’ (tin2005-08818-c04) and (tin2008-06491-c04-02). The work of Gara Miranda has been developed under grant fpu-ap2004-2290.Publicad

    A Novel Approach for Sustainable Supplier Selection Using Differential Evolution: A Case on Pulp and Paper Industry

    Full text link
    Abstract. Diverse sustainable supplier selection (SSS) methodologies have been suggested by the practitioners in earlier, to find a solution to the SSS prob-lem. A SSS problem fundamentally is a multi-criteria practice. It is a judgment of tactical significance to enterprises. The nature of this decision usually is dif-ficult and unstructured. Optimization practices might be useful tools for these types of decision-making difficulties. During last few years, Differential Evolu-tion has arisen as a dominating tool used for solving a variety of problems aris-ing in numerous fields. In the current study, we present an approach to find a solution to the SSS problem using Differential Evolution in pulp and paper in-dustry. Hence this paper presents a novel approach is to practice Differential Evolution to select the efficient sustainable suppliers providing the maximum fulfillment for the sustainable criteria determined. Finally, an illustrative exam-ple on pulp and paper industry validates the application of the present ap-proach

    Constraint Method-Based Evolutionary Algorithm (CMEA) for Multiobjective Optimization

    No full text
    . Evolutionary algorithms are becoming increasingly valuable in solving large-scale, realistic engineering multiobjective optimization (MO) problems, which typically require consideration of conflicting and competing design issues. The new procedure, Constraint Method-Based Evolutionary Algorithm (CMEA), presented in this paper is based upon underlying concepts in the constraint method described in the mathematical programming literature. Pareto optimality is achieved implicitly via a constraint approach, and convergence is enhanced by using beneficial seeding of the initial population. CMEA is evaluated by solving two test problems reported in the multiobjective evolutionary algorithm (MOEA) literature. Performance comparisons based on quantitative metrics for accuracy, coverage, and spread are presented. CMEA is relatively simple to implement and incorporate into existing implementations of evolutionary algorithm-based optimization procedures.

    Pareto set and EMOA behavior for simple multimodal multiobjective functions

    Get PDF
    Abstract. Recent research on evolutionary multiobjective optimization has mainly focused on Pareto-fronts. However, we state that proper behavior of the utilized algorithms in decision/search space is necessary for obtaining good results if multimodal objective functions are concerned. Therefore, it makes sense to observe the development of Pareto-sets as well. We do so on a simple, configurable problem, and detect interesting interactions between induced changes to the Pareto-set and the ability of three optimization algorithms to keep track of Pareto-fronts.

    Improving Classification Accuracy Using Cellular Automata

    No full text
    corecore