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Abstract

In this paper, we propose a framework using local models for multi-objective optimization to guide the search
heuristic in both the decision and objective spaces. The localization is built using a limited number of adaptive
spheres in the decision space. These spheres are usually guided, using some direction information, in the decision
space towards the areas with non-dominated solutions. We use a second mechanism to adjust the spheres to specialize
on different parts of the Pareto front using the guided dominance technique in the objective space. With this dual
guidance, we can easily guide spheres towards different parts of the Pareto front while also exploring the decision
space efficiently.

I. INTRODUCTION

Evolutionary multi-objective optimization has been applied in humerous domains [4], [5]. Researchers have
been investigating theoretically as well as empirically the performance of evolutionary multi-objective optimization
algorithms (EMOs) on a wide range of artificial optimization problems from combinatorial, real-valued to dynamic
and noisy problems. To date, there exists a number of algorithms, such as VEGA [7], SPEA2 [9], PDE [1] and
NSGA-II [5]. These algorithms are still being continuously analyzed, compared, and tested under various problem
and criteria.

EMOs (or Evolutionary Algorithms in general) are usually blind search techniques in the sense that they do
not usually use any auxiliary functions like derivatives (as in traditional deterministic optimization techniques). To
reduce the effect of the “blindness”, there are increasing number of attempts to incorporate some guidance techniqu
into EMOs. Basically, some guidance is employed to direct the search towards promising areas satisfying specifi
criteria, such as avoiding infeasible areas or of approaching particular parts of the Pareto front. Guidance can &
done in either decision or objective spaces. In this paper, we hypothesize that interleaving guidance in both th
decision and objective spaces can help to accelerate the search process.

Our proposed idea is to localize the search in the decision space by using the framework of local models [3] tha
divide the decision search space into a number of local search areas, where each area is seen as a hyper-sph
In other words, we transform searching in EMOs on the original search space into a sphere-oriented space, whe
each sphere is running its own version of EMOs. These spheres move following some direction information to
improve their local Pareto front. When we apply the guided dominance mechanism [6], they also tend to specializ
and move towards different parts of the Pareto Optimal Front (POF).

The remainder of the paper is organized as follows: background information are the methodology and presente
in Section II. An experimental study is carried out in section Ill. The last section is devoted to the conclusion.

[I. BACKGROUND



A. Guided Dominance Approach

The motivation for guided dominance [2] is that in practical problems we usually need a limited number of sample
points of the POF, rather than the whole POF. With guided dominance, the dominance relation is determined fror
the transformed function® of the original objective functiong’, in which the points in the POF area of interest
dominate all others in the remaining areas of POF. For the details of this approach, readers are referred to [2].

Based on this approach, Deb et al [6] proposed a technique to divide the POF into a number of parts wher
each part is tracked by a subpopulation. In order to do this, an equivalent number of weighted matrices is define
to transform the original objective functions. In other words, the dominance relation in each population is defined
by a separate weighted matrix. With the partition of the POF in the objective space, the search process is easi
guided. Note that this approach only works on problems with a convex POF; and also that is the class of problem
we are addressing in this paper.

B. Local Models

In local models, the decision search sp&de divided up into a number of non-overlapping spheres, where each
spheres; is defined by a pair of a centroid and radids= [so, s1,..s,] ands; = (¢;, ;). Initially, all r; are set
to be the same value Inside each sphere, points are generated uniformly, except for the restriction that they are
kept distant from each other by a predefined distance threghold _

More formally, let D% be the Euclidean distance between two centroids of arbitrary spAesad B andd’ be
the Euclidean distance between two arbitrary poirdad| inside any arbitrary sphere A whetg is the centroid
of that sphereA. The following condition must then hold:

DE > 2 di* <r,di* <r,dl >3 (1)

To initialize a spheres;, we use a spherical coordinate system. Assume (x1,z2,...z,) IS @ point in the
Cartesian coordinate system. We can calcutaft®m the parameters of an equivalent spherical coordinate system,
including a radial coordinate, andn-1 angular coordinate&a, as...c.,_1 as follows:

T = c’i + 7 cos(a)

x9 = b + rsin(aq ) cos(az)

. ' (2
Tp-1=Cp_q+ rsin(aq)... sin(ay—2) cos(ap—1)
Ty = ch, +rsin(ay)... sin(an—2) sin(a,—1)

Therefore, for a poink in a sphere, we generate randomly a setdf angular values«) and then apply Eq.
2 to calculate Cartesian coordinate valuesXoEach sphere is run by its own EMO algorithm. Over time, these
spheres move and are being guided towards the global Pareto front. The general steps for the framework of loc
models are as follows:

« Step 1 Define spheres: Number of spheres, Radius for spheres, and Minimal distance between two points
« Step 2 Calculate the initial positions of the centroids of the spheres, complying with the rules in Eqg. 1
» Step 3 Initialize spheres: using an uniform distribution, while following Egand complying with the rules
in Eq. 1.
« Step 4 Run one evolutionary cycle with the EMO on each sphere.
o Step 5 Start the moving operator to move spheres.
« Step @ If Stop condition is not met Goto step 4, otherwise Stop the process.

An issue associated with the above framework is how to balance exploration and exploitation. This model mighi
not have an advantage over the global model in the case of single-modal problems since it heavily focuses o
exploration. However, in the case of multi-modal problems, the exploration ability in combination with a suitable
adaptation strategy for spheres can help the system to approach the global optima quickly. Obviously, the adaptatic
strategy for spheres is the central point of the proposed local models, as it defines how to suitably move the spher
(including their speed and direction) and how to adjust the radius of the spheres to be suitable with the curren
state. We refer the readers to [3] for more details on localization.



C. Guidance of spheres

All spheres are initialized following the conditions in Equation 1. Centroids are then recalculated for all spheres
after every round of evolution - a round is completed when all spheres finish one cycle of their own evolutionary
process. The new and old centroids are used to determine the direction of improvement. We use PSO-V2 (a versic
of the local models to guide spheres in the decision space), which in simple terms, applies a weak stochastic presst
to move the spheres towards the global optima. Details of how the direction of improvement is implemented a:
well as PSO-V2 are given in [3] instead for space limitations.

Note that the direction of improvement in the local models exploits both local and global information. However,
in problems such as the ZDTs, the use of global information might cause the spheres to quickly move closely t
each other as they are approaching the POF. Thus, searching time might be wasted since the spheres search
same areas of the POF. It seems better to instead guide each sphere to occupy a different part of the POF, or
least reduce as much as possible the overlapping of the POF's parts that are discovered by the spheres.

To implement this idea, we need to divide the POF into a number of parts. Each part is then used to guide :
sphere. In this way, we usenumber of global centroidmstead of only one as in PSO-V2. The number of parts,
spheres, and global centroids are kept the same. However, we want to se# ditision, in the sense that the
parts are allowed some overlapping, but the overlapping is kept as small as possible. For this, we select the guids
dominance approach in [6].

In this approach, each sphere is associated with a POF part the one that it contributes the most non-dominat
solutions to, in comparison with other parts. Each POF part is assigned only one sphere. When a sphere needs
be guided by global information, the sphere’s centroid is determined from both the new local centroid, which is
calculated based on all individuals of the sphere that belong to its associated POF part and the global centroit
which is considered to be the centroid of that POF part.

[11. EXPERIMENTS

In order to validate the proposed method, which we call GUIDED, we carried out a comparative study in which
we tested the method on three ZDT problems: ZDT1, ZDT3 and ZDT4 which all have similar convex shapes of
their POFs, but different types of difficulties, namely continuous, discontinuous, and multi-modal (See [11] for
more details). We selected NSGA-II as the algorithm to run in each sphere of our models. Also, all the results will
be analyzed and compared with two other systems, one is built on an equivalent number of sub-populations, whic
are defined on the global search space as well as NSGA-II itself.

We use the hypervolume ratio [4], [10] to measure the comparative performance of the different techniques
Note that hypervolume is used to indicate both theseness and diversityf the obtained POFs. The reference
point for each problem is seen as the worst point in the objective space obtained by all comparing methods.

We initialize the parameters as follows, and apply non-dominated sorting to update the global archive. All case:
were tested on 30 separate runs with different random seeds. We used 5 spheres, total population size is 2(
maximum global archive size 100, update frequency for each centroid is every 5 generations, crossover rate O
and mutation rate 0.1.

We will compare the guided version with NSGA-Il with the same population of 200 individuals and also with
NSGA-II with five - possibly initially overlapping - populations, called 5SNSGA-II. All models were run with the
same number of evaluations in order to make a fair comparison.

A. Results and Discussion

Convergence is one of the most important characteristics of an optimization technique since its main use i
to assess the performance of the algorithm. However, the way of looking at convergence of single objective an
multiobjective optimizations are quite different [8]. If some measurements of the objective function, with regard
to the number of generations, are experimentally considered as an indication for convergence in single objectiv
optimization, it is not a suitable method for multi-objective optimizations since they do not involve the mutual
assessment on all objective functions.



Further, the consideration of convergence is not only on how close the obtained POF, at the last generation,
in comparison to the true Pareto optimal front, but also the rate of convergence which is convergence over time
We consider both issues in this section.

For the closeness of the obtained POF, we use the hyper—volume ratio, delndtedvever, it should be noted
that this measurement is not always possible in practice, since the true POF is not always known. With test problem
we calculateH of the last generation for all models, and report the best, median, worst, mean and standard derivatiol
among 30 runs. All the results are reported in Table 1.

Prob Models Best Median Worst Mean(STD)
GUIDED 0.9998 0.9996 0.9988 0.9995 (0.0002)

ZDT1 NSGA-II  0.9989 0.9987 0.9984 0.9987 (0.0001)
5NSGA-II  0.9937 0.9925 0.9900 0.9923 (0.0009)
GUIDED 1.0000 0.9998 0.9993 0.9998 (0.0002)

ZDT3 NSGA-II  0.9989 0.9980 0.9974 0.9981 (0.0003)
5NSGA-Il  0.9924 0.9890 0.9872 0.9895 (0.0013)
GUIDED 1.0000 0.9984 0.9948 0.9982 (0.0015)

ZDT4 NSGA-II  1.0000 0.9997 0.9974 0.9994 (0.0008)
5NSGA-II  0.9994 0.9951 0.9923 0.9954 (0.0016)

TABLE |

VALUES OF THE HYPERVOLUME RATIO FOR EACH METHOD ONZDT1, ZDT3,AND ZDT4 (BOLD INDICATES THE BEST RESULTS
OBTAINED ON A PROBLEM)

It is obvious that allowing populations to run concurrently without guidance (even on the global scale) does not
help to improve the performance of the optimization process. That is the reason for the inferior performance o
5NSGA-II on all problems.

For ZDT1, an easy problem, there is no contradiction between the local and global information; hence GUIDED
was able to get closer to the POF and achieve the best overall performance. Moreover, the localization in th
objective space resulted in some sort of a division of labor thus allowing the system to smoothly converge to the
POF. ZDT3 shows similar behaviour.

However, in the case of ZDT4, the GUIDED approach was not as good as we thought it should be. Despite tha
one of the runs obtained the best overall hyper-volume ration, the average and overall performance is inferior t
NSGA-II. We conjecture that the small population size in each sphere, is the reason for these inferior results, sinc
ZDT4 is highly multi-modal. This point will be analyzed later in this section.
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Fig. 1. The hypervolume ratio of differing techniques (up to 20000 evaluations) over time in ZDT1, ZDT3, and ZDT4.

To track the convergence of an EMO, there are several techniques in the literature. However, in this analysis
we have used another simple mechanism for tracking the convergence, by measuring the hypervolurdg ratio (
over time, since it is consistent with the performance measure used above. We can cdngfaakt models; as
an example in Figure 1, we visualize the averafedf 30 runs for all models. It is very clear that in the first few
generations, GUIDED is quite slow. This is because localization starts with an exploration phase which consume
time. However, the adaptive strategy of GUIDED helps the method to adjust to move faster if the search spac



seems smooth enough. It then becomes clearer to see that GUIDED converges very quick to the optimal. Howeve
for ZDT4, it seems that GUIDED gets trapped in the local optima a bit longer than NSGA-II does.

As we hypothesized above, that the small sub-population sizes might have caused the poor performance of t
local models, since they were unable to capture the local fithess landscape well enough when the problem is high
multi-modal such as for ZDT4. To test this hypothesis, we increased the population size for each sphere to 10
individuals (500 individuals overall). The hyper—volume ratio that each method achieved over time (up to 50000
evaluations) is visualized in Figure 2.
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Fig. 2. The hyper—volume ratio of the three techniques over time for ZDT4 with a total population size of 500 individuals and up to 50000
objective evaluations.

It is clear from Figure 2 that GUIDED achieves faster convergence than the other two methods. Again, the patter
is repeated in which GUIDED starts slowly in the exploration phase and increases the speed over time. It is als
possible to see a regular series of drops in the curve for GUIDED (also in Figure 1). These drops reflect soms
sort of loss of diversity in the POF. This sometimes happens when the sphere’s motion changes (with the updalt
frequency), and then the sub-population has to adjust to that change. Therefore, this is reflected in the drop-recove
cycles shown in the figure, which seems to be part of the process of first moving to a new better area in the searc
space, followed by an exploration phase of that area.

All in all, the dual guidance technique shows a good ability to quickly approach the true POF. With the above
test problems, it was able to obtain converged and diverse POFs ( see Figure 3).

IV. CONCLUSION

This paper proposed a novel technique (GUIDED) to guide a localized - using hyper—spheres - version of NSGA
Il. Each sphere is simultaneously focusing on separate areas of the decision and objective space. The technique v
tested against NSGA-II with one population, as well as with multi-populations searching on the global space. The
experimental results showed the superior performance of GUIDED in comparison with NSGA-II and 5NSGA-II.
For future work, we intend to validate the approach with different schemes of dividing the POF and also with the
problems that have more than two objectives.
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Fig. 3. POFs that GUIDED obtained over time for ZDT1, ZDT3, and ZDT4.
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