3,231 research outputs found

    Bearing tester data compilation analysis, and reporting and bearing math modeling

    Get PDF
    Integration of heat transfer coefficients, modified to account for local vapor quality, into the 45 mm bearing model has been completed. The model has been evaluated with two flow rates and subcooled and saturated coolant. The evaluation showed that by increasing the flow from 3.6 to 7.0 lbs/sec the average ball temperature was decreased by 102 F, using a coolant temperature of -230 F. The average ball temperature was decreased by 63 F by decreasing the inlet coolant temperature from saturated to -230 F at a flow rate of 7.0 lbs/sec. Since other factors such as friction, cage heating, etc., affect bearing temperatures, the above bearing temperature effects should be considered as trends and not absolute values. The two phase heat transfer modification has been installed in the 57 mm bearing model and the effects on bearing temperatures have been evaluated. The average ball temperature was decreased by 60 F by increasing the flow rate from 4.6 to 9.0 lbs/sec for the subcooled case. By decreasing the inlet coolant temperature from saturation to -24 F, the average ball temperature was decreased 57 F for a flow rate of 9.0 lbs/sec. The technique of relating the two phase heat transfer coefficient to local vapor quality will be applied to the tester model and compared with test data

    Considerations for performance evaluation of solar heating and cooling systems

    Get PDF
    One of the many factors which must be considered in performance evaluation of solar energy systems is the relative merit of a given solar energy system when compared to a standard conventional system. Although initial and operational costs will be dominant factors in the comparison of the two types of systems and will be given prime consideration in system selection, sufficient data are not yet available for a definitive treatment of these variables. It is possible, however, to formulate relationships between the nonsolar energy requirements of the solar energy systems and the energy requirements of a conventional system in terms of the primary performance parameters of the systems. Derivations of such relationships, some parametric data for selected ranges of the performance parameters, and data with respect to limiting conditions are presented

    Design and operation of a solar heating and cooling system for a residential size building

    Get PDF
    The first year of operation of solar house is discussed. Selected design information, together with a brief system description is included. The house was equipped with an integrated solar heating and cooling system which uses fully automated state-of-the art. Evaluation of the data indicate that the solar house heating and cooling system is capable of supplying nearly 100 percent of the thermal energy required for heating and approximately 50 percent of the thermal energy required to operate the absorption cycle air conditioner

    Advanced rocket engine cryogenic turbopump bearing thermal model

    Get PDF
    A lumped node thermal model was developed representing the Space Shuttle Main Engine (SSME) liquid oxygen (LOX) turbopump turbine end bearings operating in a cryogenically cooled bearing tester. Bearing elements, shaft, carrier, housing, cryogen flow characteristics, friction heat, and fluid viscous energy are included in the model. Heat transfer characteristics for the regimes of forced convection boiling are modeled for liquid oxygen (LOX) and liquid nitrogen (LN2). Large temperature differences between the cryogenic fluid and baring contact surfaces require detailed nodal representation in these areas. Internal loads and friction heat are affected by temperature dependent operating clearances requiring iterations between bearing thermal and mechanical models. Analyses indicate a thermal-mechanical coupling resulting in reduced operating clearances, increased loading and heating which can contribute to premature bearing failure. Contact surfaces operate at temperatures above local saturation resulting in vapor rather than liquid in the contacts, precluding possible liquid film lubrication. Elevated temperatures can reduce lubrication, increase friction, and reduce surface hardness supporting a surface failure mode rather than subsurface fatigue

    Vortex Lattices in Active Nematics with Periodic Obstacle Arrays

    Full text link
    We numerically model a two-dimensional active nematic confined by a periodic array of fixed obstacles. Even in the passive nematic, the appearance of topological defects is unavoidable due to planar anchoring by the obstacle surfaces. We show that a vortex lattice state emerges as activity is increased, and that this lattice may be tuned from ``ferromagnetic'' to ``antiferromagnetic'' by varying the gap size between obstacles. We map the rich variety of states exhibited by the system as a function of distance between obstacles and activity, including a pinned defect state, motile defects, the vortex lattice, and active turbulence. We demonstrate that the flows in the active turbulent phase can be tuned by the presence of obstacles, and explore the effects of a frustrated lattice geometry on the vortex lattice phase.Comment: 6 + 8 pages, 4 + 3 figure

    Friction mediated phase transition in confined active nematics

    Full text link
    Using a minimal continuum model, we investigate the interplay between circular confinement and substrate friction in active nematics. Upon increasing the friction from low to high, we observe a dynamical phase transition from a circulating flow phase to an anisotropic flow phase in which the flow tends to align perpendicular to the nematic director at the boundary. We demonstrate that both the flow structure and dynamic correlations in the latter phase differ from those of an unconfined, active turbulent system and may be controlled by the prescribed nematic boundary conditions. Our results show that substrate friction and geometric confinement act as valuable control parameters in active nematics.Comment: 6+7 pages, 4+3 figure

    The Mass-Radius Relation Of Young Stars. I. Usco 5, An M4.5 Eclipsing Binary In Upper Scorpius Observed By K2

    Get PDF
    We present the discovery that UScoCTIO 5, a known spectroscopic binary in the Upper Scorpius star-forming region (P = 34 days, M-tot sin(i) = 0.64M(circle dot)), is an eclipsing system with both primary and secondary eclipses apparent in K2 light curves obtained during Campaign 2. We have simultaneously fit the eclipse profiles from the K2 light curves and the existing RV data to demonstrate that UScoCTIO 5 consists of a pair of nearly identical M4.5 stars with M-A = 0.329 +/- 0.002 M-circle dot, R-A = 0.834 +/- 0.006 R-circle dot, M-B = 0.317 +/- 0.002 M-circle dot, and R-B = 0.810 +/- 0.006 R-circle dot. The radii are broadly consistent with pre-main-sequence ages predicted by stellar evolutionary models, but none agree to within the uncertainties. All models predict systematically incorrect masses at the 25%-50% level for the HR diagram position of these mid-M dwarfs, suggesting significant modifications to mass-dependent outcomes of star and planet formation. The form of the discrepancy for most model sets is not that they predict luminosities that are too low, but rather that they predict temperatures that are too high, suggesting that the models do not fully encompass the physics of energy transport (via convection and/or missing opacities) and/or a miscalibration of the SpT-T-eff scale. The simplest modification to the models (changing T-eff to match observations) would yield an older age for this system, in line with the recently proposed older age of Upper Scorpius (tau similar to 11 Myr).NASA Science Mission directorateW. M. Keck FoundationAstronom
    • …
    corecore