6 research outputs found

    Synergistic Positive Feedback Mechanisms Underlying Seizure Initiation

    Get PDF
    Investigations into seizure initiation, in recent years, have focused almost entirely upon alterations of interneuronal function, chloride homeostasis, and extracellular potassium levels. In contrast, little attention has been directed toward a possible role of dendritic plateau potentials in the actual ictogenic transition, despite a substantial literature dating back 40 years regarding its importance generally in epilepsy. Here, we argue that an increase in dendritic excitability, coordinated across the population of pyramidal cells, is a key stage in ictogenesis

    α7 nicotinic receptor-mediated astrocytic gliotransmitter release:Aβ effects in a preclinical Alzheimer's mouse model

    Get PDF
    It is now recognized that astrocytes participate in synaptic communication through intimate interactions with neurons. A principal mechanism is through the release of gliotransmitters (GTs) such as ATP, D-serine and most notably, glutamate, in response to astrocytic calcium elevations. We and others have shown that amyloid-β (Aβ), the toxic trigger for Alzheimer's disease (AD), interacts with hippocampal α7 nicotinic acetylcholine receptors (nAChRs). Since α7nAChRs are highly permeable to calcium and are expressed on hippocampal astrocytes, we investigated whether Aβ could activate astrocytic α7nAChRs in hippocampal slices and induce GT glutamate release. We found that biologically-relevant concentrations of Aβ1-42 elicited α7nAChR-dependent calcium elevations in hippocampal CA1 astrocytes and induced NMDAR-mediated slow inward currents (SICs) in CA1 neurons. In the Tg2576 AD mouse model for Aβ over-production and accumulation, we found that spontaneous astrocytic calcium elevations were of higher frequency compared to wildtype (WT). The frequency and kinetic parameters of AD mice SICs indicated enhanced gliotransmission, possibly due to increased endogenous Aβ observed in this model. Activation of α7nAChRs on WT astrocytes increased spontaneous inward currents on pyramidal neurons while α7nAChRs on astrocytes of AD mice were abrogated. These findings suggest that, at an age that far precedes the emergence of cognitive deficits and plaque deposition, this mouse model for AD-like amyloidosis exhibits augmented astrocytic activity and glutamate GT release suggesting possible repercussions for preclinical AD hippocampal neural networks that contribute to subsequent cognitive decline

    Graphical user interface for simultaneous profiling of activity patterns in multiple neuronal subclasses

    No full text
    We provide notes on how to use a graphical user interface (GUI), implemented with MATLAB, for aligning imaging datasets of biological tissue. The original use was for matching two imaging data sets, where one set was taken of the living preparation and another was taken post-fixation and following immunohistochemical processing. This technique is described in detail in an accompanying paper (Parrish et al., [1], where we also include information about the experimental procedures, and examples of the usage of the GUI. Keywords: Pyramidal neurons, Interneurons, Glia, Astrocytes, MATLAB, Immunohistochemistry, Ca2+ imagin

    Indirect effects of Halorhodopsin activation: potassium redistribution, non-specific inhibition and spreading depolarisation

    Get PDF
    The movement of ions in and out of neurons can exert significant effects on neighboring cells. Here we report several experimentally important consequences of activation of the optogenetic chloride pump, Halorhodopsin. We recorded extracellular K+ concentration, [K+]extra, in neocortical brain slices prepared from young adult mice (both sexes) which express Halorhodopsin in pyramidal cells. Strong Halorhodopsin activation induced a pronounced drop in [K+]extra, that persisted for the duration of illumination. Pharmacological blockade of K+ channels reduced the amplitude of this drop, indicating that it represents K+ redistribution into cells during the period of hyperpolarization. Halorhodopsin thus drives the inward movement of both Cl- directly, and K+ secondarily. When the illumination period ended, a rebound surge in extracellular [K+] developed over tens of seconds, partly reflecting the previous inward redistribution of K+, but additionally driven by clearance of Cl- coupled to K+ by the potassium-chloride co-transporter, KCC2. The drop in [K+]extra during light activation leads to a small (2-3mV) hyperpolarization also of other cells that do not express Halorhodopsin. Its activation therefore has both direct and indirect inhibitory effects. Finally, we show that persistent strong activation of Halorhodopsin causes cortical spreading depolarisations (CSDs), both in vitro and in vivo. This novel means of triggering CSDs is unusual, in that the events can arise during the actual period of illumination, when neurons are being hyperpolarized and [K+]extra is low. We suggest that this fundamentally different experimental model of CSDs will open up new avenues of research to explain how they occur naturally
    corecore